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SUMMARY

Recent adaptive radiations provide striking examples
of convergence [1–4], but the predictability of evolu-
tion over much deeper timescales is controversial,
with a scarcity of ancient clades exhibiting repetitive
patterns of phenotypic evolution [5, 6]. Army ants
are ecologically dominant arthropod predators of
the world’s tropics, with large nomadic colonies
housing diverse communities of socially parasitic
myrmecophiles [7]. Remarkable among these are
many species of rove beetle (Staphylinidae) that
exhibit ant-mimicking ‘‘myrmecoid’’ body forms and
are behaviorally accepted into their aggressive hosts’
societies: emigrating with colonies and inhabiting
temporary nest bivouacs, grooming and feeding with
workers, but also consuming the brood [8–11]. Here,
we demonstrate that myrmecoid rove beetles are
strongly polyphyletic, with this adaptive morpholog-
ical and behavioral syndrome having evolved at
least 12 times during the evolution of a single staphy-
linid subfamily, Aleocharinae. Each independent
myrmecoid clade is restricted to one zoogeographic
region and highly host specific on a single army ant
genus. Dating estimates reveal that myrmecoid
clades are separated by substantial phylogenetic dis-
tances—asmuchas105million years. All suchgroups
arose in parallel during the Cenozoic, when army ants
diversified into modern genera [12] and rose to
ecological dominance [13, 14]. This work uncovers
a rare example of an ancient system of complex
morphological and behavioral convergence, with
replicate beetle lineages following a predictable
phenotypic trajectoryduring their parasitic adaptation
to host colonies.

RESULTS AND DISCUSSION

The degree to which biological evolution is idiosyncratic or

predictable is a fundamental question in evolutionary bio-

logy. Convergence—the acquisition of similar traits in different

taxa evolving under comparable selective regimes—provides a

compelling argument for predictability in evolutionary change

[15]. The most striking convergent systems are recent adaptive

radiations, in which independent lineages have followed seem-

ingly parallel evolutionary trajectories. Darwin’s finches [1],

Hawaiian Tetragnatha spiders [2], African lake cichlids [3], and

three-spined sticklebacks [4] represent natural experiments,

where exposure to similar selection pressures has led to analo-

gous phenotypes in separate lineages. Although predictable

evolution is manifestly demonstrated by these systems, the like-

lihood of convergence may nevertheless be enhanced by the

young ages of these clades: the close genetic relatedness of lin-

eages is expected to bias the production of genetic variation,

enhancing the probability that similar traits will evolve repeatedly

[16, 17]. Molecular studies of such recently descended conver-

gent taxa support this notion, often revealing selection acting

on the same loci or signaling pathways [18, 19]. With increasing

phylogenetic divergence between taxa, however, the likelihood

of suchmarked convergence has been shown to decreasemark-

edly [6]. Ancient clades displaying equivalently conspicuous

repeated evolution are rare, lending apparent credence to

Gould’s view that evolution is inherently contingent [5] and that

adaptive responses to a given selection pressure are likely to

be different in distantly related taxa.

Here, we report a novel example of predictable evolution of a

highly complex phenotype that has occurred over a deep time-

scale. We explored the evolutionary origins of specialized rove

beetles (Staphylinidae) that live symbiotically with army ants, un-

covering an ancient system of marked convergence. Army ants

are dominant eusocial predators of the tropics: their colonies

are nomadic, with hundreds of thousands of workers that

emigrate between temporary nest sites and engage in group

foraging (raiding) to harvest invertebrate prey [20]. Althoughnoto-

riously aggressive, army ant colonies representmajor concentra-

tions of resources, attracting numerousmyrmecophiles that form

obligate symbioses with their hosts [7]. Diverse taxa including

mites, silverfish, flies, wasps, and beetles exploit this resource,

employing either defensive morphologies, or behavioral and

chemical strategies to evade worker hostility. A dramatic mani-

festation of this lifestyle occurs in numerous genera of the staph-

ylinid subfamily Aleocharinae, where the beetles anatomically

mimic their host ants and are recognized and accepted by

them [8, 10, 11]. Such species live as behaviorally integrated

social parasites—appearing at least partially assimilated into
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colony life but simultaneously feeding on the ants’ brood and

raided food. In contrast to the majority of the �16,000 species

of Aleocharinae,which aremainly free-living specieswith ‘‘gener-

alized’’ staphylinid morphology and extremely similar in body

form (Figure 1A), ant-like ‘‘myrmecoid’’ aleocharines are heavily

modified (Figures 1B–1E), with a petiolate abdomen (a narrowed

waist and expanded gaster), elongate appendages, geniculate

(elbowed) antennae, and further similarities to host ant body

size, thorax shape, and cuticle sculpturation. The myrmecoid

ecomorph is thought to mediate tactile mimicry of nestmate

recognition cues [10, 11, 21–23] and is accompanied by a suite

of behaviors, including grooming and licking of workers [9],

cohabitation of temporary nesting bivouacs, and synchronicity

with the colony where the beetles emigrate with hosts and

join them on raids, sometimes being carried by or phoretically

attaching toworkers [10, 24].Where known, the beetle’s cuticular

hydrocarbons match those of the host [24], and novel glands on

the beetles’ cuticles are thought to facilitate chemical integration

into the ant society [11].

The myrmecoid morphological and behavioral syndrome pre-

sents an evolutionary puzzle: because these beetles are so

anatomically modified, their phylogenetic relationships to other

aleocharines are obscure. Prominent aleocharine taxonomists

have proposed conflicting evolutionary scenarios: Seevers [8]

argued for a single principal origin of these beetles within Aleo-

charinae, forming the large tribe Dorylomimini, and posited an

ancient association with army ants followed by codiversification

with hosts throughout the tropics. In contrast, Kistner and

Jacobson argued for multiple origins [22, 23, 25, 26], splitting

Dorylomimini into numerous small tribes and invoking potentially

widespread—and extraordinary—morphological and behavioral

convergence. Neither scenario has been tested phylogeneti-

cally, and to date, the relationships of these beetles have

been uncertain. A molecular approach is essential but has

been enormously problematic due to difficulties in obtaining

specimens. The beetles rank among the rarest and most chal-

lenging of insects to find in nature, with many known only from

a small number of museum specimens. In this study, we pre-

sent the outcome of efforts to collect these beetles and explore

their evolutionary relationships. Over the course of a decade,

we observed army ant colonies across the world’s tropics,

accumulating myrmecoid aleocharines. In reconstructing their

evolutionary history, we uncovered evidence of conspicuous,

repeated evolution over deep time that runs counter to the notion

of evolutionary contingency and represents a new paradigm for

understanding the origins of interspecies relationships.

Parallel Evolution of Myrmecoid Syndrome in
Aleocharinae
Army ants include the New World genera Eciton, Labidus, Neiva-

myrmex, Nomamyrmex, and Cheliomyrmex and Old World

Aenictus, Aenictogiton, and Dorylus. These ‘‘true’’ army ants

exhibit classical nomadic biology [20] and are split into separate

Old and New World clades within the subfamily Dorylinae [12].

We collected aleocharines associated with all genera except

the poorly known Cheliomyrmex and Aenictogiton. Additionally,

we collected beetles known to associatewith twodistantly related

ants, Carebara (Myrmicinae) and Liometopum (Dolichoderinae),

Figure 1. Myrmecoid Syndrome in Aleocharine Rove Beetles

(A) Examples of free-living Aleocharinae with generalized morphology, Oxypoda and Atheta.

(B) Examples of army ant social parasites with myrmecoid morphology, Ecitocryptus (associated with Nomamyrmex) and the eyeless, elytra-less Pseudomi-

meciton (associated with Labidus).

(C–E) Living myrmecoids with host ants: Ecitophyawith Eciton host (Peru), Rosciszewskiawith Aenictus host (Malaysia), Beyeriawith Neivamyrmex host (Ecuador).
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which display group-foraging behavior. Both generalized and

myrmecoid aleocharines were collected, and to avoid subjectivity

on our part, we defined myrmecoid species as those with petio-

late abdomens and long legs that previous authors judged to be

myrmecoid [8, 22, 23, 25–27] (see ‘‘Specimen collection and

taxon sampling’’ in Supplemental Experimental Procedures).

Most species collected were new to science, so DNA was ex-

tracted non-destructively [28] to permit taxonomic description

([29–31] and ongoing efforts). We sequenced five loci previously

used in aleocharine phylogenetics: nuclear 28S rRNA, 18S

rRNA, and Topoisomerase 1; mitochondrial Cytochrome c oxi-

dase subunit I and 16S rRNA [32, 33]. Army ant myrmecophile

data were integratedwith sequences from free-living,morpholog-

ically generalized taxa representing a broad taxonomic spectrum

of Aleocharinae including all major tribes, and outgroups from the

related subfamily Tachyporinae (see Data S1). We performed

Bayesian phylogenetic inference on the resulting 181-taxon ma-

trix (see Data S2). The topology produced by this analysis, along

with exemplar beetle and host ant images, is shown in Figure 2.

The pattern of convergence is dramatic and clear to the eye.

Generalized aleocharines form an ancestral backbone to the

tree, from which numerous elaborate myrmecoid lineages have

emerged in parallel (Figures 2, S2A, and S2B; beetles enlarged

in Figures S1A–S1O). Each independent origin of the myrmecoid

ecomorph is represented by a small clade or single taxon that is

host specific on a single ant genus. All host ant genera have been

targeted: each of the ‘‘true,’’ doryline army ants have their own,

dedicated symbiont clade(s) and so too do the group-foraging

Liometopum and Carebara. We estimated the number of origins

using parsimony optimization and Bayesian ancestral state

reconstruction. For parsimony, we assumed Dollo-type irrevers-

ibility of myrmecoid syndrome [34], which may be a valid

assumption in this system: the ‘‘tippy’’ distribution of myrmecoid

lineages across the tree is consistent with it being a terminal

phenotype, and an improbably large number of regains of

primitive characters would be required to lose myrmecoid

morphology and restore generalized morphology (together with

reversion to ancestral behavior). Such a model of evolution pro-

duces the 15 origins depicted in Figure 2. However, for a more

conservative estimate taking branch lengths and support values

into account, and including the possibility of trait reversal, ances-

tral states were calculated over a Bayesian tree distribution, giv-

ing an estimate of 12 origins (Figure S2C). We think 12–15 origins

is an underestimate: there remain numerous myrmecoid genera

associated with both Old and New World army ants that we

were unable to collect, some of which—given the polyphyletic

evolution of this syndrome—likely represent additional origins.

A detailed anatomical study of myrmecoid taxa and their in-

ferred, non-myrmecoid relatives revealed characters supporting

some of our molecular groupings (Figure S3 and ‘‘Systematics

and Behavior of Myrmecoid Aleocharinae’’ in Supplemental Dis-

cussion, which also summarizes known behavior of each clade).

Importantly, we see no evidence in any of the myrmecoid

clades of a lineage promiscuously switching to a different host

genus, indicating that all these relationships are highly host

specific. The converse of this relationship does not hold, how-

ever, with some ant genera—Aenictus and Dorylus in partic-

ular—playing host to multiple beetle clades. The stringency

with which each beetle clade associates with its ant genus likely

extends to species level, since individual beetle species have

generally been recorded living with single ant species [8, 10].

From this evolutionary pattern we determine the following: (1)

separate aleocharine lineages evolved to socially parasitize

each army ant genus; (2) during subsequent adaptation of these

lineages to ants, they specialized and became host specific; (3)

most dramatically, their morphology and aspects of behavior fol-

lowed a predictable evolutionary trajectory, leading to an overtly

stereotyped symbiosis. Cumulatively the outcome is an extraor-

dinary system of parallel evolution in the classical sense, where

multiple ancestral taxa sharing a relatively conserved body

plan have each evolved in the same direction [35]. This degree

of conspicuous, repeated parallelism is rare in the natural world

and is generally associated with young clades [6, 36]. In contrast,

Aleocharinae are ancient, with crown-group fossils known from

the mid-Cretaceous and a rich fauna of modern tribes and

genera already diversified by the Eocene [37]. Substantial phylo-

genetic distances should therefore separate many myrmecoid

lineages scattered across the tree.

To gauge the timescale over which this system emerged,

we dated the tree using a Bayesian lognormal relaxed clock,

calibrating nodes with Cretaceous Burmese and Middle

Eocene Baltic amber fossils, and a compression from the

Jurassic Talbragar Fish Bed (see Supplemental Experimental

Procedures for details). Our analysis shows that virtually all myr-

mecoid clades arose in parallel during the Cenozoic (Figure 3;

Figure S2D). This temporal window is consistent with when

ants in general (including army ants) are thought to have risen

to ecological dominance [13, 14], promoting the diversification

of myrmecophiles [38]. Although army ant dating estimates are

problematic due to limited fossils (only a single, Miocene Domin-

ican amber Neivamyrmex is known [39]), recent dating estimates

hypothesize that stem groups of doryline army ants date to the

Upper Cretaceous (�80mya,) radiating into crown-group genera

�35–20 mya [12]. This time frame is broadly consistent with the

origins of myrmecoid clades inferred in this study (Figure 3; Fig-

ure S2D), although we see no clear relationship between the age

of each ant genus and its corresponding myrmecoid clade(s)

(data not shown).

Of foremost interest, however, is that we estimate the most

recent common ancestor of all myrmecoid clades to have ex-

isted in the Early to mid-Cretaceous. In our focal analysis, this

ancestor lived �105 mya (Figure 3; Figure S2D). There is thus

an ancient, inherent potential for Aleocharinae to evolve sym-

bioses with army ants, which was realized by multiple lineages

in parallel during the Cenozoic and which has led to the repeated

evolution of symbionts with matching ecomorphologies and

similar behaviors over an extraordinarily deep timescale. We

note that origins of myrmecoid syndrome are unevenly distrib-

uted across the subfamily: 12 of the 15 myrmecoid lineages

are clustered within a clade, ‘‘APL’’ (Figures 2 and 3), comprising

the tribes Pygostenini, Lomechusini, and the vast, paraphyletic

Athetini, where myrmecoid lineages occur among the ‘‘False

Lomechusini’’ (clade F) [32], a group of New World genera

formerly placed in Lomechusini. This bias probably represents

the tropical dominance of APL tribes relative to other aleochar-

ines, ecologically juxtaposing the beetles with army ants and

hence elevating the likelihood of evolving this type of symbiosis.

In contrast, no myrmecoid lineages emerge within the speciose
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but largely temperate tribe Oxypodini (cladeO; Figure 3). Despite

this lineage clustering, the APL clade is itself still comparatively

ancient (84.77 mega-annum [Ma]), and three additional origins

outside the APL clade (clades 1, 2, and 15) confirm that the po-

tential for evolvingmyrmecoid syndrome extends broadly across

the subfamily (Figure 3).

What circumstances permitted this deep-time convergent

system to arise? We deduce that historical selection pressures

imposed by different army ant genera on separate aleocharine

lineages were likely similar; so too were the adaptive responses

of the beetles as they evolved with their hosts. This inherency in

the outcome of selection begs the question of why myrmecoid

syndrome has evolved repeatedly in Aleocharinae in particular,

as opposed to all other groups of beetles, including 31 other

staphylinid subfamilies numbering some 45,000 species—most

of which have generalized staphylinid morphology similar to

aleocharines. We previously argued that aleocharines’ predatory

habits, small body size, andmajor defensive capacity in the form

of a dorsal abdominal tergal gland constitute a groundplan

unique among Coleoptera [11]. This suite of characters predis-

poses aleocharines to successful entry and exploitation of ant

colonies, providing the basis for why myrmecophily has evolved

numerous times [10, 11], including repeated associations with

army ants [8]. While many army ant associates are morphologi-

cally generalized (e.g., multiple APL-clade genera such as Tetra-

donia [40]), such species tend not to be socially accepted in

nests. We propose that to gain the selective advantage of un-

locking colony resources via social integration, many ancestrally

generalized taxa experienced intense selection to conform to the

myrmecoid shape, enabling the beetles to pass tactile assess-

ment by workers [10, 11, 21–23]. Myrmecoid aleocharines are

associated only with army ants and some other group foraging

hosts that may employ such tactile cues to orchestrate collective

behavior. If the narrow niche of social acceptance in such col-

onies demands an ant-like form, then the generalized aleochar-

ine anatomy, comprising short elytra and an exposed, flexible

abdomen, is conducive to such developmental remodeling [8,

11, 41]. Consequently, aleocharines are evolutionarily poised

for myrmecophily and also for becoming myrmecoid as a major

socially parasitic strategy when specializing on army ants.

This near-clade-wide preadaptive groundplan may underlie the

repeated evolution of myrmecoid syndrome in Aleocharinae.

Documented examples of deep-time convergence are mostly

limited to the evolution of single traits with few instances of

repeated evolution, and where a narrow range of alternative

functional solutions are available. The independent origin of

wings in birds, bats, and insects is an example. Similarly,

although an expanding body of work has shown parallel genetic

changes occurring in widely separated taxa [19, 42], such cases

are typically functionally equivalent mutations in single, broadly

conserved genes governing relatively simple traits, such as

pigmentation [43, 44] or toxin resistance [45]. In contrast, we

Figure 2. Bayesian Consensus Tree of Aleocharinae

Myrmecoid clades are highlighted in orange, with representative taxa shown along with their respective host army ant genera. Clade numbers indicate inde-

pendent origins of myrmecoid syndrome inferred from Dollo-type parsimony optimization. Anatomically generalized species that embody the ancestral

morphology in Aleocharinae are also shown for comparison. Circles on nodes signify posterior probability (PP) values (open circles: PP > 0.95; closed circles:

PP > 0.9). ‘‘APL’’ marks the ‘‘Athetini, Pygostenini, Lomechusini’’ clade; ‘‘F’’ labels the ‘‘False Lomechusini’’ clade. Outgroups belonging to Tachyporinae have

been removed. The full topology, with PP values and taxonomic groupings indicated is shown in Figures S2A and S2B. See also Figures S2C and S3.

Figure 3. Dating the Evolution and Ancestry of Myrmecoid Clades

Dated phylogeny produced by BEAST2 and eight calibration points under a Bayesian lognormal relaxed clock. Outgroups belonging to Tachyporinae have been

removed. Green circles indicate seven out of eight fossil calibration points; all eight calibration points, including the remaining onewithin Tachyporinae, are shown

in Figures S2A and S2B. Myrmecoid clades are highlighted in orange, with clade numbers corresponding to those in Figure 2. The position and age of the APL

clade as well as the positions of the P, L, and F subclades are indicated. The O (Oxypodini) and Al (Aleocharini) clades are also highlighted, and the age of the

common ancestor of all myrmecoid lineages is indicated. See also Figures S2A, S2B, and S2D.
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have found that a complex morphological and behavioral syn-

drome has evolved recurrently over >100 Ma, across a clade

approximately equal in species richness to mammals and birds

combined. To our knowledge, convergence at this frequency,

timescale, and phenotypic complexity is without close prece-

dent. The most comparable convergent system at roughly half

the age may be the Caribbean anoles [46], where different eco-

morphs share an Eocene common ancestor [47].

Our discovery challenges Gould’s view that if the tape of life

were replayed, an entirely different assemblage of life would

exist [5]. On the contrary, the tape of life appears to be highly

predictable whenever aleocharines ecologically coexist with

army ants. We note that despite this overarching determinism,

however, there is nevertheless an element of contingency: as Se-

evers appreciated [8], the segmental construction of the abdom-

inal petiole differs among myrmecoid genera; some have unique

specializations, such as the gland-associated abdominal lobes

of Aenictoteras, or the complete loss of eyes and elytra in

Pseudomimeciton; behavioral differences in how the beetles

interact with ants also likely exist [9]. While this spectrum of vari-

ation could represent a continuumof specialization, we posit that

at least some apparently idiosyncratic elements in this otherwise

parallel system stem from clade-specific peculiarities: genetic

and phenotypic disparities between ancestors of different myr-

mecoid lineages, discrepancies in selection pressures imposed

by different host ants, as well as mutational and environmental

stochasticity. Future studies on these beetles promise to reveal

much about the nature of complex phenotypic change and the

genetic and evolutionary forces shaping intricate symbioses in

the animal kingdom.
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