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Abstract: Fluctuating asymmetry (FA) is a morphometric tool used to measure developmental
instability in organisms which have been exposed to stress or other adverse conditions. Phenotypic
variability in response to stressors are the result of interactions between genomes and the environment,
acting in a noisy developmental system. Most of the organisms have bilateral symmetry with a
repetition of structures in different positions or orientations; asymmetrical variation has been a
morphological response associated with insecticide application inducing disturbances in endocrinal
system product of the chemicals. Triatoma infestans (is the main vector of Chagas disease in South
America. The availability of food sources varies for populations of T. infestans living in different
habitats; insects that inhabit the intradomicile feed preferentially on human blood, whereas insects
that develop in the peridomicile feed on the blood of the other mammals and birds. The following
research evaluate the FA to the different ecotopes in two geographical areas of Chuquisaca Bolivia;
Yamparáez/Sotomayor of the high inter-Andean valleys and Huacaya/Imbochi of the boreal Chaco
and a CIPEIN laboratory strain population. A combination of advanced morphometrics tools and
multivariate analysis were used to quantify the levels of asymmetry produced by pyretroid near to
the peridomiciles in Bolivia. Populations from Yamparáez/Sotomayor were found to have higher
levels of FA which the combination of environmental conditions such as low temperatures avoid
greater permanence in the habitat and more exposition to insecticide. A better understanding of
the combination of these tools will allow researchers to implement better public policies to regulate
insecticide applications and to understand how certain organisms adapt to multiple stressors.

Keywords: fluctuating asymmetry; pesticides; geometric morphometrics; vector; developmental instability

1. Introduction

Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) is one of the
main vectors of Chagas disease in South America [1–3]. This hematophagous insect, a
synanthropic species, has adapted to the human habitat: domestic and peridomestic areas
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(warehouses and pens for domestic animals) [4–6]. Acoording to the World Health Organi-
zation, there are 6 million people infected with the parasite Trypanosoma cruzi (Chagas, 1909)
(Kinetoplastida, Trypanosomatidae), the causal agent of Chagas disease, in Latin America
and it is estimated that 75 million people are at risk of contracting the disease. Complica-
tions of chronic disease can be cardiac abnormalities and dilatation of the esophagus and
colon [7].

Considering the high epidemiological importance of reducing the vector of Chagas
disease transmission in South America, the attempts to eliminate the vector insect in
the intra and peridomicile areas started to include spraying insecticides in 1991 [8,9]. In
Chuquisaca, Bolivia, they started to use insecticides in 2000 in the intra and peridomicile
areas with the purpose of eliminating T. infestans. In this way, the indices of intradomiciliary
infestation in 2017 were less than 3% in the inter-Andean valley area; however, in the Chaco
area, they were more than 7% [10,11]. In both geographical areas, the infestation rates in
the peridomicile area were higher than 14% [11].

In South American countries such as Bolivia, Argentina and Paraguay, populations
of T. infestans resistant to pyrethroid insecticides were reported [5,12–16]. Resistance to
pyrethroid insecticides in populations of T. infestans has been reported in Bolivia using
biological test in eggs and nymphs of the first instar [14,16–19]. In the inter-Andean valleys
of Chuquisaca, Bolivia, Lardeux et al. carried out studies of T. infestans detecting resistance
to pyrethroid and sensitivity to organophosphate and carbamate insecticides [17].

The peridomestic habitat of T. infestans differ substantially between inter-Andean
valleys and Chaco; the building materials, the environmental temperature and the relative
humidity have an influence on the microenvironments [20]. The availability of food sources
varies for populations of T. infestans living in different habitats; insects that inhabit the
intradomicile feed preferentially on human blood, whereas insects that develop in the
peridomicile feed on the blood of other mammals and birds [10]. In addition, these insects
are exposed to different levels of environmental pollution or toxic substances, such as
insecticides [21]. Stress in insects sometimes can be associated with insecticide application
and their development [22–28]. Fluctuating asymmetry (FA) allows monitoring the stress
of organism in the laboratory and natural environments, since genetic and environmental
changes can increase FA with changes in developmental homeostasis expressed in adult
morphology. These disturbances include extreme temperatures and contact with chemicals,
and they tend to increase as habitats become geographically marginal; this includes expo-
sure to chemical toxins [29]. Brouwer et al. [30] highlighted the value of the integration of
studies combining biochemical, physiological and ecological approaches in their assess-
ment of developmental instability. Eeva et al. [31] tested the combination of this approaches
in two hole-nesting passerines where the foods’ exposure to heavy metals has induced high
levels of FA, on the other hand, Benítez et al. [26] identify high levels of FA related to the
effect of pine resin and the stress of pine plantation into native species of beetles which live
in the native understory of the plantation.

FA is a random deviation from bilateral symmetry that is normally distributed around
a mean of 0, and it has been widely used to infer developmental instability [32]. FA is
considered an approximate measure of environmental and genetic stress [33]. Directional
Asymmetry (DA) measures the tendency of a trait to be consistently developed in a different
way on the right and left sides of the body, subtle patterns of DA are a phenomenon
widespread in animals [34–37].

The factors that influence the development of FA in insects have been widely studied
in relation with food and habitat. For example, Benítez et al. [38] conducted a study in
Macaria mirthae Vargas et al., 2005 (Lepidoptera: Geometridae), a native moth from Chile
(north populations) feeding preferentially on the Fabacea Acacia macracanta Humb. Et
Bonpl. ex Willd. (Leguminosae) species. Due to the loss of its habitat, it moves towards
Fabacea Leucaena leucocephala (Lamarck) (Leguminosae), showing FA and DA on the left
and right wings of M. mirthae species; in the specimens, DA was detected in moths that feed
on the native plant and FA in the insects of the exotic plant. Nunes et al. [39] carried out a
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study in Apis mellifera (Linnaeus, 1761) (Hymenoptera: Apidae) from 16 locations in five
geographical regions of Brazil, located in areas with low and high impact of environmental
disturbance. The authors observed the existence of FA in bees in the shape of wings but
not in size, in locations with high levels of environmental pressure.

T. infestans with FA have significant association with the food source, habitat, insec-
ticide spraying cycles and seasons related to the dispersal of adult insects from domestic
animal pens to the intradomicile [40]. Triatoma infestans that inhabit the intradomicile had
lower FA indices compared with specimens of the peridomicile; according to sex, males
presented higher FA indices compared with females, males have a greater tendency to the
dispersion from one pen to another or the intradomicile [41–43]. FA rates in T. infestans
wings were higher before insecticide spraying in the peridomicile area compared with FA
rates after chemical treatment [40]. Therefore, the aim of this research is to combine the
use of two morphological tools, geometric morphometrics and fluctuating asymmetry, to
evaluate the influence of insecticides on the levels of developmental instability and also
their relationship with the environmental quality in peridomestic habitats in Bolivia.

2. Materials and Methods
2.1. Study Area

The study was conducted in two geographical regions of Chuquisaca, Bolivia: one
location in the inter-Andean valley: Yamparáez/Sotomayor (Lat. 19◦19′ S Long. 65◦60′ O),
high valley, and the other location is Huacaya/Imbochi (Lat. 19◦48′ S Long. 64◦54′ O)
located in the dry Chaco (Figure 1). According to Navarro and Maldonado [44], the
high inter-Andean valleys are found in the Tucumano-Boliviano region, its geographical
and environmental characteristics are: altitude more than 2900 m above sea level with
high plateau zones, temperatures are around 15 ◦C and humidity 40% approximately.
The dry Chaco region is located at the east of the Eastern Mountain Range, a region
of flat arid lands, with temperatures above 30 ◦C, and low humidity, around 20%, it is
called the Bolivian Boreal Chaco region. Both regions are endemic for Chagas disease.
In Yampráez/Sotomayor, adult T. infestans were colleted from 10 peridomestics habitats,
and in Huacaya/Imbochi, adult insects were collected from 13 peridomestics habitats.
Populations of T. infestans in both regions were handled with pyretroid insecticides since
the year 2000, with both T. infestans populations developing a resistance to pyretroid
insecticides once or twice a year [11].

2.2. Insect Sampling and Preparation

In total, 69 adults of T. infestans were collected in peridomestic locations (pens and
chicken coops). Overall, 28 females and 41 males were distributed as follows: Yam-
paráez/Sotomayor 14 and 24, Huacaya/Imbochi 14 and 17, females and males, respectively.
Between July and August 2018, the capture was carried out for one hour in each pen or
chicken coop, using a clamp each individual was introduced in a glass vial and preserved
in alcohol (96%) for further analyses. In the laboratory, wings were mounted on slides
with Euparal® for further morphometric analyses, and they were photographed with a
Celestron Handheld Digital Microscope pro 5 MP.

To compare FA levels of T. infestans from two peridomestic environmental (Yam-
paráez/Sotomayor and Huacaya/Imbochi) we used a control population, reared in our
laboratory, standard strain CIPEIN of adult T. infestans, donated by Entomology Laboratory
of Programa Chagas from Chuquisaca, Bolivia, first generation in our laboratory: 14 females
and 14 males. This strain was developed under controlled conditions of temperature 23 ◦C
+/−2, humidity 50% +/−2 and 12 h night; 12 h day.
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Figure 1. Coordinate information from the Military Institute of Geography for the two locations
where Triatoma infestans populations were sampled in Chuquisaca: Sotomayor/Yamparáez (red),
Huacaya/Imbochi (yellow).

2.3. Shape Analyses

Nine landmarks were digitized, using the software TpsDig 2 V.231 [45], for both right
and left wings, according to their external anatomy (Figure 2). The landmarks were aligned
applying a Procrustes superimposition method [46]. This procedure removes size, position
and orientation information to standardize each specimen based on centroid size. The
digitized wings exhibit matching symmetry, which means that the shape analysis included
the reflection of all configurations from one body side to its mirror image [36,47]. To
calculate the measurement error (ME), the right and left wings were digitized twice [48].
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Procustes ANOVA is a tool commonly used to analyse asymmetry patterns in mor-
phometric data. The elements of an ANOVA, such as the mean of the squares (MS) and
the sum of the squares (SS), which are dimensionless, are essential to evaluate the intensity
of the observed asymmetry [36,48]. FA is defined as those random deviation occuring
between the left and right sides in a bilateral organism. It is the variation of the individual
asymmetry vectors around the means of all the configurations from each side [49].

Following the Protocol of Benítez et al. [27] a comparison between FA intensities was
performed by the MS values of shape from a Procrustes ANOVA and a multivariate regres-
sion of shape vs. Procrustes FA Scores, using the Procrustes distances of the asymmetry
component of the data. Finally, in order to see morphometric differentiation between
populations, a Principal component analysis (PCA) was performed with the covariance
matrix of wing shape using the software MorphoJ 1.06 d [50].

3. Results

The measurement error was assessed in all the populations studied, in order to avoid
any type of error associated with the data. The results of a Procrustes ANOVA indicated
that MS values of FA (Ind*side) exceeded the MS values of error, implying that there is no
ME in the data (Tables 1–3).

Table 1. Procrustes ANOVA for both centroid size and shape from CIPEIN Popualtion
Triatoma infestans, (dimensionless) characterized by matching symmetry. Sums of squares (SS) and
mean squares (MS) are in units of Procrustes distances.

Centroid
Size/Effect SS MS df F p Pillai tr. p (Param)

Individual 1,267,588 0.469477 27 12.13 <0.0001
Side 1,312,120 131.212 1 33.90 <0.0001
Ind*Side 1,044,953 0.038702 27 1.85 0.026
Error 1 116,915 0.020888 56

Shape/Effect

Individual 0.06646813 0.000175842 378 2.52 <0.0001 9.38 <0.0001
Side 0.00176474 0.000126003 14 1.81 0.0358 0.76 0.0203
Ind*Side 0.0263932 0.000697337 378 3.08 <0.0001 7.57 <0.0001
Error 0.0177762 0.0000226737 784

Table 2. Procrustes ANOVA for both centroid size and shape from Yamparáez/Sotomayor Population
T. infestans, (dimensionless) characterized by matching symmetry. Sums of squares (SS) and mean
squares (MS) are in units of Procrustes distances.

Centroid
Size/Effect SS MS df F p Pillai tr. p (Param)

Individual 46,357,914 1,252,917 37 4.99 <0.0001
Side 1,439,198 1,439,198 1 5.73 0.0218
Ind*Side 9,286,172 0.250978 37 20.33 <0.0001
Error 1 0.938393 0.012347 76

Shape/Effect

Individual 0.20439244 0.0003945800 518 2.01 <0.0001 8.81 <0.0001
Side 0.00641765 0.0004584037 14 2.34 0.0039 0.64 0.008
Ind*Side 0.10166526 0.0001962650 518 2.61 <0.0001 9.17 <0.0001
Error 0.08004337 0.000075287 1064
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Table 3. Procrustes ANOVA for both centroid size and shape of Huacaya/Imbochi Population
T. infestans, (dimensionless) characterized by matching symmetry. Sums of squares (SS) and mean
squares (MS) are in units of Procrustes distances.

Centroid
Size/Effect SS MS df F p Pillai tr. p (Param)

Individual 661,088,646,217 2,203,628,821 30 1.00 0.4993
Side 220,987,792 220,987,792 1 1.00 0.3245
Ind*side 6,606,556,014 2,202,185,338 30 1.00 0.4835
Error 1 1,363,261,983 219,880,965 62

Shape/Effect

Individual 0.10800141 0.000257146 420 4.09 <0.0001 10.75 <0.0001
Side 0.00132375 0.0000945536 14 1.5 0.1065 0.89 <0.0001
Ind*Side 0.02643423 0.0000629386 420 5.28 <0.0001 7.48 <0.0001
Error 0.08004337 0.000075287 1064

A significant level of FA (Ind*side: p < 0.0001) was found in CIPEIN individuals
(Table 1), with a regular FA intensity in comparison with the other two populations,
suggesting that part of the asymmetry in the F1 (first generation) of the control population
(Table 4) is due to genetic influence.

After analyzing the peridomestic populations, FA was found in specimens from
Huacaya/Imbochi and Yamparáez/Sotomayor (Ind*side: p < 0.0001) (Tables 1 and 2).
Nevertheless, after a multivariate regression of Shape vs. Procrustes FA Scores intensity
was found to be higher in T. infestans from Yamparáez/Sotomayor than specimens from
Huacaya/Imbochi (Table 4 and Figure 3).
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Table 4. Intensity of Fluctuating Asymmetry between populations and sex in T. infestans Mean
Squares (MS) AND Pillai tree data of Procrustes ANOVA of shape.

Population Sex N◦ of Insects MS (Ind*Side) Pillai tr.

Yamparáez/Sotomayor Female 14 0.0001970676 7.98
Male 24 0.0001892431 8.43

Huacaya/Imbochi Female 14 0.0000751902 7.05
Male 17 0.0000546154 6.22

CIPEIN
Female 14 0.0000692699 7.18
Male 14 0.0000724677 7.04

In order to assess the FA influence by sexes, a Procrustes ANOVA was performed in
every population by sex, displaying that females in T. infestans from both peridomestic
populations showed higher levels of FA compared with male populations (Table 4).

A principal component analysis showed a morphospace where the first three PC’s
accumulate 56.4% of the shape variation (PC1: 27.8%, PC2: 15.2% PC3: 13.4%), displaying a
well-defined shape differentiation between populations Although Yamparáez/Sotomayor
showed more disparity wing shapes in comparison with the other two population, wing
shape vary principally by the movement of the wing veins, displaying wider wings in the
populations of Yamparáez/Sotomayor and, on the contrary, more elongated wings with
less intraspecific variation in populations of Huacaya/Imbochi were noticeable ovalated
and had wider wings than the control population of CIPEIN (Figure 4).
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4. Discussion

It is well known that FA is a measure of developmental instability (DI) [27,51–54].
According to Palmer and Strobeck [29], the visible and measurable asymmetry of right
and left sides of the wings of T. infestans could be the expression of random disturbances
accumulated during development [29]. Populations more exposed to environmental stress
show high levels of DI, unlike a “control” population or populations with little expo-
sure [55]. Several stress factors can be present, such as extreme temperatures, food source
quality from hosts, stress from environmental pollution and chemical products such as
insecticides [21,26,28,33,56–59].

According to Nattero et al. [41], T. infestans from open peridomestic habitats are
more likely to exhibit FA in the shape compared with domiciliary insects; in addition,
FA in insects that inhabit the peridomicile is related to the quality of food sources of
hosts, ecotopes and sex. In our study, control population (CIPEIN) were reared under
stable laboratory conditions (temperature and humidity) and fed blood from chickens,
principally due to the fact that they were not exposed to any insecticide application. This
population showed lower values of FA compared with the peridomestic populations from
Yamparáez/Sotomayor and Huacaya/Imbochi. Female T. infestans from Huacaya/Imbochi
have significant differences in FA in wing shape compared with males. According to the
characteristics of the goat pens and chicken coops built with sticks and palm trees, and open
ecotopes, males have the advantage of flying from the peridomicile to human dwelling
buildings because they have predisposition to feed on human blood; however, females are
less demanding and limit themselves to staying in pens an chicken coops. On the other
hand, the environmental temperature is between 25 to 30 ◦C in winter, allowing the flight
of male triatomines mainly at night [4,6,60].

Similar data were obtainned by Nattero et al. (2015) in the location of Figueroa, in the
northwest of Argentina. The wing asymmetry patterns of females living in goat pens were
significantly different to that of males, because females have less mobility between habitats.
A different condition occurs with the T. infestans population from Yamparáez/Sotomayor,
which presented slightly increased levels of FA in shape and size, compared with the popu-
lation from Huacaya/Imbochi and the CIPEIN “control” strain. In Yamparáz/Sotomayor
the environmental temperature is lower than 15 ◦C in winter and the humidity is more
than 40%, besides the pens and chicken coops are built with blocks of soil, leading to an
unfavorable environment for the development of T. infestans. These characteristics avoid
flying and infesting other peridomestic and domiciliary environments, low temperatures do
not allow flight for T. infestans [61–63]. Males remain in their habitat, feeding on their hosts
like females; this population of female insects showed an increase of FA compared with
males. Nattero et al. [42] followed up peridomestic sities in the northwest of Argentina, and
showed that FA patterns were not stable in T. infestans and depend on the characteristics
of habitat and season of the year. Moreover, it seems to be modified by the history of
insecticide spraying, either through direct effects on the development of insects or through
indirect effects related with flight and invasion of human dwelling habitats.

In our study, the collection of insects was carried out in the peridomicile in winter,
six months after insecticide were sprayed in Yamparáez/Sotomayor, and two years after
chemical treatment in Huacaya/Imbochi. T. infestans from Yamparáez/Sotomayor received
chemical treatment with pyretroid insecticides, (deltamethrin and alpha-cipermethrin)
for 17 years (two applications a year) [11], developing resistance according to a research
conducted by Lardeux et al. [17] It is possible that regular contacts with insecticides are
related with the presence of FA in this population [29]. The FA present in populations
collected in natural environments (peridomiciliary) could be related to exposure to the
toxic action of insecticides [22,40]. The populations of T. infestans from Huacaya/Imbochi
were also treated with pyretroid (deltamethrin) and organophosphates (bendiocarb), but
the treatment cycles were less frequent for 17 years (one cycle or less a year) and this insects
also developing resistance to pyretroid insecticides [17]. In Huacaya/Imbochi, chemical
control in peridomestic environments has been historically difficult because of cultural
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practices and the low availability of chemicals [11]. Furthermore, the construction of pens
and chicken coops is precarious and the insecticide is easily eliminated by environmental
factors, such as rain and solar rays, which contribute to the degradation of insecticides [64].
Moreover, in phenological stages such as eggs, the insecticide is not efective, and the insects
survive and reinfest [65]. However, insecticides have a repellent effect and T. infestans
inhabit other peridomiciliary environments [60]. A study conducted by Nattero et al. [40]
indicates that before fumigations, FA levels in wings of T. infestans were higher than after
chemical treatment, mentioning that this pattern may be related to a selective survival
adaptation to insecticides, that may or may not be mediated by resistance to pyrethoids and
may be associated with feeding success. Genetic disturbances include intense directional
selection and certain specific genes [66]. Both populations have been in constant contact
with insecticides, developing a resistance to pyrethroids. Lardeux et al. [17] carried out
a biological test to detect the sensitivity to deltamethrin of the populations of T. infestans
from Yamparáez/Sotomayor and Huacaya, reporting 58% and 67%, respectively.

5. Conclusions

The following research confirms the presence of developmental instability in T. infestans
by the quantification of FA. T. infestans was found to be sensible for the environmental
conditions from the different peridomiciliary population studied, and was also found to
be sensible for insecticide application. The results were found to relate the levels of FA
to places more exposed to insecticides during a sustained period of time. There are still
no reports of the identification of genes for resistance to insecticides in both populations.
Although FA was detected in both populations studied, the population of T. infestans from
Yamparáez/Sotomayor presented higher levels of FA that could be associated with higher
levels of stress related to environmental characteristic, microhabitat and greater exposure
to insecticides. Therefore, the combination of environmental characteristics such as tem-
perature, relative humidity of the environment, preference in feeding according to the
source, characteristics of peridomestic habitats, and resistance to insecticides, are one of the
main factors that influence the development of FA in wings in populations of T. infestans
from Yamparáez/Sotomayor and Huacaya/Imbochi, regions in Chuquisaca Bolivia. More
multifactorial studies are needed with the combination of genomic and transcriptomic
analyses which can relate the particular substance of the insecticide to the levels of FA in
the different populations, which are the next steps for this research.
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