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Running head: Flower duration along environmental gradients

Abstract: A wave of green leaves and multi-colored flowers advances from low to high latitudes each 

spring. However, little is known about how flowering offset (i.e., ending of flowering) and duration of 

populations of the same species vary along environmental gradients. Understanding these patterns is 

critical for predicting the effects of future climate and land-use change on plants, pollinators, and 

herbivores. Here, we investigated potential climatic and landscape drivers of flowering onset, offset, 

and duration of 52 plant species with varying key traits. We generated phenology estimates using 

>270,000 community-science photographs and a novel presence-only phenometric estimation method. 

We found longer flowering durations in warmer areas, which is more obvious for summer-blooming A
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species compared to spring-bloomers driven by their strongly differing offset dynamics. We also 

found that higher human population density and higher annual precipitation are associated with 

delayed flowering offset and extended flowering duration. Finally, offset of woody perennials was 

more sensitive than herbaceous species to both climate and urbanization drivers. Empirical forecast 

models suggested that flowering durations will be longer in 2030 and 2050 under representative 

concentration pathway (RCP) 8.5, especially for summer-blooming species. Our study provides 

critical insight into drivers of key flowering phenophases and confirms that Hopkins’ Bioclimatic 

Law also applies to flowering durations for summer-blooming species and herbaceous spring-

blooming species.

Key words: Plant phenology, Urbanization, Climate change, Flower duration, Hopkins’ Bioclimatic 

Law

1 Introduction

It is well known that leaf out and flowering onset occur earlier at lower latitudes and altitudes, a 

pattern referred to as Hopkins’ Bioclimatic Law (Hopkins 1920). The production of leaves and 

flowers provides critical resources and cues to other members of the community, such as insects, with 

consequences for ecosystem productivity and carbon uptake (Visser and Both 2005, Cleland et al. 

2007, Parmesan 2007). However, it is far less known whether the senescence of leaves and offset (i.e., 

ending) of flowering are also sensitive to environmental conditions to the same extent as onset. 

Consequently, it is unclear whether the duration of such reproductive events changes over these same 

latitudinal and elevational gradients. Do populations of the same plant species have longer flowering 

seasons in warm areas compared to those in cold areas? Or is the duration of flowering constant 

across regions? How will future environmental changes affect shifts in onset, offset, and length of 

flowering? These answers have significant implications for ecosystem functioning, for example via 

mismatches with pollinators (Kudo and Ida 2013, Schenk et al. 2018), thereby directly impacting 

plant fitness and ecosystem health (Petanidou et al. 2014, Rafferty et al. 2016).

The timing of flowering onset is known to be tuned to environmental conditions that are rapidly 

changing, including temperature and precipitation during growing seasons, and winter chilling A
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(Mouradov et al. 2002, Larcher 2003, Cleland et al. 2007, Zohner et al. 2018). Extensive continuing 

development of human-built environments contributes to and interacts with climate, while also 

increasing air pollution and altering soils and hydrology (Grimm et al. 2008). These accelerating 

landscape changes also impact plant flowering phenology in complex ways (Jochner and Menzel 

2015). Li et al. (2019), for example, demonstrated that the impact of urbanization on flowering and 

leaf-out timing depends on the context of the regional temperature and is not simply driven by urban 

heat island effects. These interactions between global-scale patterns such as climate warming, and 

more regional landscape changes, make clear the importance of modeling frameworks that are able to 

incorporate multiple drivers operating at different spatial scales, and how they intersect with species 

life-history traits, to better understand spatial and temporal patterns of flowering phenology change.

Previous studies have implicated both genetic control and environmental cues as drivers of offset and 

duration. Recent work in the Arctic has shown that while onset may be controlled by environmental 

factors such as snowmelt, offset does not have direct environmental cueing and is likely under genetic 

control (Semenchuk et al. 2016). In such cases, flowering duration would not be impacted by climate 

change. Shifting onset but fixed durations could exacerbate phenological mismatch, especially if 

pollinator activities do not also shift in the same way (Kudo and Ida 2013, Renner and Zohner 2018). 

Other work has shown that flowering offset has complex cueing that often includes temperature 

driving earlier offset (Høye et al. 2013, Marchin et al. 2015). If different cues drive onset and offset, 

increased warming could lead to longer or shorter durations (Fig. 1), rather than simply shifting 

flowering timing. It remains poorly understood whether there are generalities to onset, offset, and 

duration of flowering, and whether these events are mediated by key environmental cues or 

underlying phylogenetic constraints.

Previously, the major challenge with assessing environmental drivers of phenophases beyond onset 

was a lack of data to examine trends over space or time. Community-science photographs of plants 

are a key resource that hold promise for providing the data needed for such analyses (Barve et al. 

2020), but have so far been underused. Such resources have grown exponentially in recent years. As 

of June 2020, the community-science platform iNaturalist has over 5 million research-grade 

photographs of over 16,000 angiosperm species in the United States alone, and total records are A
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doubling in growth per year. Openly available iNaturalist record data provide a unique opportunity to 

study phenology trends at broad extents and finer spatial resolutions than ever before.

Here we use a novel suite of methods and data resources to understand how flowering onset, offset, 

and duration vary across space and in relation to both climate and urbanization. In particular, we focus 

on 52 species of common flowering plants that differ in their flowering onset timing and in functional 

aspects of growth form and reproduction - traits that are expected to relate to differential response to 

climatic conditions (Sherry et al. 2007, Wang et al. 2020). Understanding how traits condition the 

phenological responses of species is critical to predicting the impacts of anthropogenic change. We 

also predict likely responses to future warming and urbanization, and discuss challenges inherent in 

predictions based on such space-for-time substitutions. In particular, we address three key questions: 

1) How is the timing and duration of flowering affected by climate and how do species traits mediate 

those effects? 2) How does urbanization influence the timing and duration of flowering? 3) How will 

the timing and duration of flowering change over the next 30 years with ongoing land-use and climate 

change?

2 Methods
2.1 Phenological Data

We downloaded all images for the records marked as research grade for 60 flowering plant species 

from iNaturalist (accessed between 7th February 2020 to 31st March 2020). Research-grade 

photographs are those for which at least two iNaturalist users have verified identifications and are 

considered usable in downstream research activities. We chose an initial list of 60 species 

strategically based on the following criteria: 1) Species must have broad distributions across latitude 

in order to capture variation across climate gradients. 2) Species must have flowers that are easy to 

visually score as present or absent. We prioritized plants with large, showy flowers. 3) Species must 

also have sufficient numbers of research-grade observations. We required a minimum of 1,000 

research grade observations for initial consideration, but as discussed below, the actual number of 

records with flowers that were found in a sufficient number of spatial grids was unknown until later in 

the pipeline. 4) Species were chosen to balance sampling of key traits used in the analysis. These A
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selected focal traits included whether the plant was annual or perennial, woody or herbaceous, and 

whether the plant was an early spring, late spring, or summer blooming species. Trait data were 

gathered from literature sources or online resources and are available in Supporting Data 1.

After downloading images, we used the software ImageAnt (https://gitlab.com/stuckyb/imageant) to 

score the presence of flowers in photographs. We set up a scoring rubric in ImageAnt that had four 

states, “present”, “absent”, “uncertain” or “flag due to a problem”. We considered a photograph to 

have flowers absent if no flowers were visible on the photograph, or if all the inflorescences on a 

sheet had wilted, dried or discolored petals or other structures.  If a photograph had multiple senesced 

flowers but a single one that was not wilted, dried or discolored, these were scored as evidence of 

flower presence. We used a presence-only modeling approach for estimating onset and offset because 

the absence of a flower in a photograph does not guarantee true absence unless the whole plant is 

photographed, which is often not the case. As well, presence-only based predictions of onset and 

offset have been recently shown to be robust when using proper methods, based on simulation results 

(Belitz et al. 2020). We used scoring of “uncertain” in cases where a definitive flowering state could 

not be determined. We found a very small percent (less than 0.1%) of the images for which taxonomic 

misidentification or image problems, which we flagged.

We tested how well flowers could be reliably annotated by scorers by initially requiring each image 

be scored by at least two independent volunteers for 10 test species, following the protocol proposed 

by Barve et al. (2020). Scores were compared between volunteers, and given a low rate of 

disagreement (< 1%), we opted for a simpler single-annotator approach. In total, 270,111 images were 

scored for 52 species. We then filtered records that were scored as presence, removing absence, 

uncertain and flagged records, resulting in 205,993 records with flowers present. We further focused 

on the 160,097 records that were observed between 2017 and 2019 because our goal is to study spatial 

patterns (See Supporting Data 1 for per-species details).

2.2 Estimate flowering onset, offset, and duration

We divided the contiguous United States into 25 km by 25 km grid cells using the Albers Equal Area 

projection (Fig. 1) and estimated the flowering onset, offset, and durations for species-year-grid cell 

combinations with enough records (see below for details). These data represent an aggregated A
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population-level estimate of onset and offset in order to examine broad climate and landscape 

gradients. In several species-year-grid cell combinations, some particular days, within iNaturalist’s 

City Nature Challenge window, had significantly more images than others, which may bias the 

estimations of flowering onset and offset. We reduced potential biases by randomly thinning the 

images from those dates to the average number of images per day for that species-year-grid cell 

combination. For each species-year combination, we only included grid cells with at least 10 scores 

from at least 3 different dates, resulting in 54,559 records from 52 species and 484 unique grid cells. 

For each of the 2,281 species-year-grid cell combinations, we estimated flowering onset and offset 

based on the image dates using a newly developed R package, phenesse v0.1.1 (Belitz et al. 2020). 

Phenesse uses a parametric bootstrapping approach to estimate phenological metrics for any 

percentile using the Weibull distribution and has been demonstrated to provide accurate and unbiased 

estimates for unimodal seasonal abundance curves (Belitz et al. 2020). We used the estimates of 5 and 

95 percentiles as proxies for flowering onset and offset, as these phenometrics have been found to be 

more accurate and less biased than attempting to estimate the absolute start and termination of a 

flowering event (Belitz et al. 2020). Durations were calculated as the number of days between the 

estimated flowering onset and offset dates. In very few species-year-grid cell combinations (< 10), the 

flowering duration was estimated to be more than 365 days. We floored those cases to 365 days, 

representing year-round flowering.

2.3 Contemporary and future Environmental Data

For each species-year-grid cell combination with estimates of flowering onset, offset, and duration, 

we obtained two types of environmental variables: climate and human population density (pop, as a 

proxy for urbanization). For climatic variables, we extracted annual average temperature (bio1), 

temperature seasonality (bio4), annual precipitation (bio12), and precipitation seasonality (bio15) 

for the corresponding year (2017, 2018, or 2019) based on monthly data from PRISM (PRISM 

Climate Group 2004). These variables provide broad climatic background and are known to affect 

plant flowering phenology. Besides the broad climatic background, plants are affected by winter 

chilling. We counted a day as a chilling day if its daily average temperature was between 0 and 7.2 

°C. We calculated the number of chilling days from November 15 to the end of February for all A
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species-year-grid cell combinations based on daily climate data from PRISM (PRISM Climate Group 

2004). We estimated human population density value for each grid cell and used it as a proxy for 

urbanization (cf. Li et al. 2019). We used the 2010s human population density data from Fang and 

Jawitz (2018), who provided decadal human population density data for the USA since 1790 at 1 km 

by 1 km spatial resolution.

For each grid cell, we also made predictions based on future climate and population density 

projections. We estimated projected human population density at 2030 and 2050 using data provided 

by McKee et al (2015). For future climate data, we used the NASA NEX-DCP30 dataset (Thrasher et 

al. 2013) and the NASA NEX-GDDP dataset (Thrasher et al. 2012). Both datasets were derived from 

the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) (Taylor et al. 2012) and across different greenhouse gas emission scenarios 

known as Representative Concentration Pathways (RCPs) (Meinshausen et al. 2011). Both datasets 

included ensemble statistics calculated for each RCP from all model runs available (33 models and 21 

models, respectively). The NASA NEX-DCP30 dataset provides downscaled monthly projections of 

temperature and precipitation from 2006 to 2099 while the NASA NEX-GDDP dataset provides daily 

projections. Raster files for all environmental variables were first reprojected and aggregated to have 

the same spatial extent and resolution as the flowering phenological data before extracting 

contemporary and future values.

From the NASA NEX-DCP30 datasets, we calculated bio1, bio4, bio12, and bio15 for each grid cell 

from 2025 to 2034 and from 2045 to 2054 based on the NASA NEX-DCP30 monthly data. We used 

the average value from 2025 to 2034 as the value of bioclimatic variables of 2030 and the average 

value from 2045 to 2054 as the value of bioclimatic variables of 2050. We calculated the number of 

chilling days during winter for the year 2030 and 2050 based on the NASA-GDDP dataset. Given the 

large data files and the computational burden, we did not use 10-year averages for the number of 

chilling days. For all projected climate data, we chose the RCP 8.5 emissions scenario because the 

current emissions trajectories have more closely followed RCP 8.5 than the lower RCP scenarios 

(Peters et al. 2012).

2.4 Plant traits and phylogenyA
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We collected trait information for 52 plant species from relevant literature and websites (Fig. S1). 

Previously reported flowering durations were represented as a range of months. Based on reported 

flowering durations, we classified species onset into early spring (Feb-March), late spring (April-

May), or summer(June-Sep). Exploratory data analysis suggested no differences between early and 

late spring species, so we lumped both groups as spring bloomers, defined as plants whose flowering 

onset is earlier than June. We also grouped species into one of the following three broadly defined 

growth forms: Herb_annual/biennial, Herb_perennial, and Woody_perennial. We derived a phylogeny 

(Fig. S1) for our 52 focal species from Smith and Brown (Smith and Brown 2018), who provided one 

of the most comprehensive seed plant phylogenies with branch lengths, based on the Open Tree of 

Life (Hinchliff et al. 2015).

2.5 Statistical Analysis

To study how environmental variables, including urbanization, affect flowering onset, offset, and 

duration and whether such effects vary with species’ traits, we used linear mixed models (LMM). We 

used the same process to select predictors and build models for flowering onset, offset, and duration. 

We started with all of the environmental variables as predictors (bio1, bio4, bio12, number of chilling 

days in winter, and population density) and phenology (either onset day of year, offset day of year, or 

number of days for duration) as the response variable. Additionally, we added important two-way 

interactions in the model. Models included the identity of grid cells and species as random terms for 

intercept, and species as random term for slope for each of the environmental variables. We did not 

include bio15 in all analyses because it is highly correlated with bio4 and bio12 (Fig. S2). We also 

examined growing degree day (GDD) models, considering GDDs accumulated in the 90 days prior to 

onset or offset predictions, but these were consistently highly correlated with mean annual 

temperature (r > 0.9) and cannot be used for duration predictions. Instead of adding all possible 

combinations of interactions, we only included two-way interaction terms that make biological and 

ecological sense based on our understanding of plant physiology and phenology in the model. 

Specifically, we added bio1:pop., bio12:pop, and bio1:bio12 in all starting models based on 

previous literature (Jochner and Menzel 2015, Li et al. 2019).The first two interaction terms test 

whether the effects of human population density (i.e., urbanization) on plant flowering vary across 

regions with different climatic conditions. The third interaction term tests whether the effect of A
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average temperature changes along a precipitation gradient. We separately ran models with number of 

records in a grid cell as covariate, in order to test if sampling biases impacted results, and in all cases 

found that this predictor was not explanatory.

We then used the step() function from the R package lmerTest v3.1-2 (Kuznetsova et al. 2017) to 

conduct backward model selections. After the best environmental variable model was found, we 

added the two plant traits: blooming groups (Spring or Summer) and growth forms 

(Herb_annual/biennial, Herb_perennial, and Woody_perennial) into the model, along with their two-

way interactions with each environmental variable. Such trait-environment interaction terms tested 

whether the changes of plant flowering phenology along environmental gradients differ among plant 

species with differing traits. We conducted backward model selections again to get the final models 

for flowering onset, offset, and duration.

All environmental variables were scaled to have mean 0 and standard deviation 1 before model 

fittings so that their effect sizes are comparable. Exploratory data analyses did not show any obvious 

differences across different years for each species-grid cell combination. We thus ignored the year in 

all models. Final models were fitted using R package lme4 v1.1-23 (Bates et al. 2015) with P-values 

calculated with the R package lmerTest v3.1-2 (Kuznetsova et al. 2017). We checked residuals of all 

three final models and did not find obvious deviation from model assumptions, including spatial 

autocorrelations (Fig. S3). Ignoring the phylogenetic relationships among species when fitting Linear 

Mixed Models with multiple species like ours may lead to badly inflated type I errors (false positives) 

(Li and Ives 2017). Therefore, we checked the three final models with phylogenetic linear mixed 

models that account for phylogenetic relationships among species using the R package phyr v1.0.2 

(Li et al. 2020). We used the Bayesian framework to re-fit the final models with uninformative priors, 

as it handles data with large numbers of levels in random terms better than the maximum likelihood 

framework in phyr. The results were largely the same (Table S5 – S7), confirming the results based 

on Linear Mixed Models. We thus reported results based on LMMs in the main text.

To predict plant flowering onset, offset, and duration of each species-grid cell combination in 2030 

and 2050, we used predicted annual mean temperature, annual temperature seasonality, annual 

precipitation, number of chilling days in winter, and forecast human population density in 2030 and A
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2050 with the assumption that the plant species observed in each grid cell will still occur there in 

those years. Given that the traits we used are categorical and describe the life-history of plants, they 

should not change by 2050. We used the predict() function in the R package lme4 keeping all 

random effects. For each species-grid cell combination, we then calculated the differences between 

the forecast flowering onset, offset, and duration with those observed (Δonset, Δoffset, Δduration). 

For Δonset and Δoffset, positive values represent flowering delays while negative values represent 

advances; positive Δduration values represent longer flowering duration while negative values 

represent shorter duration. To statistically describe the changes in plant flowering phenology, we 

fitted simple Linear Mixed Models for Δonset, Δoffset, and Δduration with intercept as the only 

fixed term and species as the only random term for the intercept. Such simple models allowed us to 

look at the general trends across all species as well as species-specific changes over time.

3 Results

Flowering Onset. The best flowering onset model included temperature, temperature seasonality, and 

number of winter chilling days. Human population density and precipitation variables were not 

included in top models nor was plant growth form. This model also included a strong interaction 

effect between annual temperature and flowering onset. All of the model predictors were highly 

significant (p < 0.005, Fig. 2, Table 1, Table S1). Annual temperature was the strongest climate 

predictor for spring onset, but its effect depends on timing of onset (spring versus summer). Holding 

other variables constant, a 1 standard deviation (s.d.) increase of temperature (about 3.94 °C) 

advanced flowering onset of species blooming in spring about 16.2 ± 1.6 days (uncertainty is reported 

as standard error hereafter) but only advanced ~6 ± 2.7 days for summer bloomers (Fig. 2a). For 

temperature seasonality, a 1 s.d. increase delayed flowering onset about 7.8 ± 1.7 days (Fig. 2b) and a 

1 s.d. increase of the number of chilling days in winter (about 20 days) delayed flowering onset about 

3.3 ± 1 days (Fig. 2c).

Flowering Offset. Key predictors of flowering offset included temperature, human population 

density, and especially onset timing (Fig. 3, Table 1, Table S2). As in the onset models, there was a 

strong interaction between onset timing and annual temperature. Unlike the onset models, there were A
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strong growth-form interactions with population density and precipitation. The average day of year of 

flowering offset for herbaceous annual spring bloomers was around 146 ± 11.9 (end of May), while 

herbaceous annual summer bloomers typically have flowering offset around 128 ± 12.4 days later 

than those of spring bloomers (end of September, p < 0.001, Table S2). The effects of average annual 

temperature on flowering offset differ between blooming groups (  = 111.91, p < 0.001). Holding 𝜒2
1

other variables constant, a 1 s.d. increase in annual average temperature (about 3.94 °C) advanced 

flowering offset of spring bloomers about 16.7 ± 1.5 days, but delayed flowering offset for summer 

bloomers about 8.7 ± 2.4 days (Fig. 3a). The effect of human population density on flowering offset 

varied among different growth forms (  = 22.04, p < 0.001), with woody perennial species being 𝜒2
2

affected the most (Fig. 3b). A 1 s.d. increase of log10-transformed human population density, that is 

about 0.8 order of magnitude change, delayed flowering offset of woody perennials about 12.2 ± 2.3 

days (Fig. 3b), which is a much stronger effect than for herbaceous plants. Woody perennial species 

were also affected the most by annual precipitation: a 1 s.d. increase of annual precipitation (about 

437 mm) delayed their flowering offset about 6.1 ± 2.8 days (Fig. 3c).

Flowering Duration. Flowering duration models had a complex set of predictors (Fig. 4, Table 1, 

Table S3). The average flowering duration for plants with flowering onset in spring versus summer 

was around 53.8 ± 4.2 and 93.8 ± 6.6 days, respectively (Fig. 4e). Woody perennials had longer 

flowering duration (93.9 ± 10.8 days) than herbaceous annual/biennials (71.3 ± 6.9 days) and 

herbaceous perennials (57.3 ± 4.5 days) (  = 14.06, p < 0.001, Fig. 4f). Effects of annual average 𝜒2
2

temperature (bio1) on flowering duration varied between species that have flowering onset in spring 

versus summer (  = 15.06, p < 0.001) and across growth forms (  = 11.14, p = 0.004, Fig. 4a). For 𝜒2
1 𝜒2

2

herbaceous annuals, a 1 s.d. increase of annual average temperature (about 3.94 °C) extended 

flowering duration of spring bloomers by about 9.3 ± 3 days but extended flowering duration for 

summer bloomers by about 19.7 ± 2.7 days (Table 1, Table S3). The trend that flowering duration of 

plants with summer onset extended faster with increasing temperature than those with spring onset 

holds for all growth forms (Fig. 4a). Increasing human population density extended flowering 

duration of summer-blooming species, but not spring bloomers (Fig. 4b). A 1 s.d. increase of log10-

transformed human population density (about 0.8 order of magnitude) extended flowering duration of 

summer bloomers by about 4.1 ± 2 days (Table 1, Table S3). Flowering durations of woody A
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perennials were more sensitive to temperature seasonality than herbaceous perennials and herbaceous 

annual/binniels (Fig. 4c). Despite the significant effect of precipitation on flowering offset, its effect 

on flowering duration was not significant (slope = 1.62, p = 0.157, Fig. 4d). Flowering duration 

decreased significantly with an increased number of chilling days in winter (slope = 6.05, p < 0.001, 

Fig. 4g).

Flowering Timing and Duration Predictions in 2030 and 2050. We used model results and 

spatially-explicit scenarios of climate change (Representative Concentration Pathways [RCP] 8.5) and 

human population density for the years 2030 and 2050 to forecast flowering onset, offset and 

duration. Under RCP 8.5, average flowering onset dates will advance (i.e., earlier in the year) by 4.84 

± 0.4 and 8.04 ± 0.6 days across all species in 2030 and 2050, respectively (Fig. 5). In both years, 

flowering onset dates for both spring and summer bloomers are predicted to advance, but species with 

spring onsets will advance more (Table S4). For both blooming groups, flowering onset dates are 

predicted to advance more in 2050 than in 2030. Average flowering offset dates will advance less 

than changes in flowering onset, with about 3.54 ± 0.5 and 5.65 ± 1 days across all species in 2030 

and 2050, respectively (Fig. 5). Flowering offset dates of spring bloomers are predicted to advance in 

both 2030 and 2050, with larger advances in 2050 (Table 5). However, flowering offset dates of 

summer bloomers are predicted to delay in 2030 and even further in 2050. Average flowering 

durations across all species will be about 2.99 ± 0.7 and 3.74 ± 0.9 days longer in 2030 and 2050, 

respectively (Fig. 5). In both years, predicted increases in flowering duration of summer bloomers 

were significantly larger than those in spring-blooming species (Table S4). Furthermore, the predicted 

increases in flowering duration of spring bloomers did not change from 2030 to 2050 while those of 

summer bloomers are predicted to become larger (Table S4).

4 Discussion

Changes in the timing and duration of flowering may disrupt interactions between plants and their 

pollinators, herbivores, and pathogens, reducing fitness at multiple trophic levels (Kudo and Cooper 

2019). Here, for the first time, we have collected macroscale, multi-species data to understand how 

flowering timing and duration varies across broad environmental gradients. This approach has its A
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roots in the pioneering work of Andrew Delmar Hopkins and his Bioclimatic Law (Hopkins 1920), 

which postulated generalities about the timing of phenological events across climatic gradients. Our 

work, nearly a century later, uses new data resources and methods to highlight the importance of 

interactions between climate, urbanization, and species traits for conditioning offset and duration of 

flowering. These models provide a needed basis for first-of-its-kind forecasting of flowering timing 

and durations under climate change and urbanization.

Our work provides a starting basis for understanding shifts in both flowering onset and offset and the 

overall effect on flowering duration. The few previous studies that focused on flowering duration 

have been limited to local spatial extents. Lessard et al. (2014) is notable for taking a phylogenetic 

comparative approach to examining flowering duration, focusing on communities along elevational 

gradients in the Canadian subarctic. They found that flowering durations were fixed while onset dates 

advanced. In warmer areas such as temperate and subtropical regions, most studies have instead found 

varying flowering durations across spatial gradients, over time, or via experimental warming 

treatments (Sherry et al. 2007, Rafferty et al. 2016, Stinson et al. 2016) but generalities have yet to 

emerge. Here we find that flowering duration generally increases in areas that are warmer and less 

seasonal. However, these effects are strongly conditioned by species traits, such that full 

understanding of changes in duration of flowering must take these traits into account. In particular, we 

found a strong interaction between temperature and general timing of flowering onset. Plants that 

flower in summer have much longer durations in the warmer parts of their range than those in colder 

regions, compared to plants that flower in spring. As an example, holding everything else equal, an 

eight degree difference in annual mean temperature would lead to an average 20 day longer duration 

for spring-blooming species, but a 40 day longer duration for summer-blooming species. When 

including such trait and climate interactions in our multi-species mixed models, we found highly 

explanatory models for both offset and duration. These results were particularly unexpected given that 

Crimmins et al. (2013) found a very different result in a more arid community along an elevational 

gradient, where summer flowering species had generally shorter durations.

These significant differences in duration are strongly determined by onset and offset differences in 

spring and summer-blooming plants. Increasing annual temperatures drive earlier onset in both spring 

and summer-blooming plants, although its effects are stronger for spring-blooming plants. However, A
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increasing annual temperature advances offset in spring-blooming plants, but instead delays offset for 

summer bloomers. This is because most summer plants are in bloom continuously until fall 

conditions, such as the first frost, cause flower senescence. Spring-flowering plants, by contrast, are 

more often ephemeral bloomers, especially herbaceous plants in forested areas that need to flower 

before canopies completely close and limit available light. This fundamental difference is key, and 

may better explain general patterns seen in the literature concerning advancing spring flowering onset 

and delayed autumn senescence (Menzel and Fabian 1999, Linderholm 2006). We note that we 

explicitly selected species from a range of habitats and ecoregions in order to better derive a general 

view of drivers of flowering offset and duration. However, we expect particular climate contexts may 

not conform, in particular arid environments (Crimmins et al. 2013). Yet broader sampling and 

explicit incorporation of habitat and ecoregion in models will likely provide an even stronger basis for 

predicting flowering phenology response to climatic change.

Previous work has also suggested the importance of growth form for explaining variation in 

phenological sensitivity to climate (Richardson and O’Keefe 2009, Wang et al. 2020). Larger shrubs 

and trees may be able to intercept more light compared with understory herbaceous plants, suggesting 

stronger direct effects compared to more climatically buffered understory plants. Our results align 

with these predictions, with increased sensitivity of woody plants compared to herbaceous ones, 

whether perennial or annual. We also note that results for all models are robust when accounting for 

phylogenetic autocorrelation (Table S5 – S7), as ignoring phylogenetic relationships may inflate type 

I errors of regressions (Felsenstein 1985, Garamszegi 2014, Li and Ives 2017). Finally, we note that 

more winter chilling days surprisingly led to later flowering onset, which is opposite predictions that 

fewer chilling days delays onset (Murray et al. 1989). Inclusion of species without chilling 

requirements, local adaptation across spatial gradients for those species that do, and the relatively 

strong relationship between winter chilling and temperature seasonality (Fig. S2) may all contribute to 

this positive relationship.

Increasing human population density (i.e., urbanization) did not show a strong pattern with flowering 

onset, but did delay flowering offset, consequently extending flowering duration (especially for 

summer-blooming species). Li et al. (2019) found that urbanization interacts with temperature to drive 

flowering phenology, using data mostly from the USA-National Phenology Network (USA-NPN). A
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That study focused on median open flower timing, rather than onset or offset, limiting direct 

comparisons with this study. Further comparisons across datasets are challenging due to a paucity of 

flower senescence timing data at USA-NPN. Still, both Li et al. (2019) and our work confirm that 

urbanization is a driver of flowering phenology. Less clear is why flowering offset, but not onset, 

should be affected by urbanization, especially if the pattern is mostly driven by urban heat island 

effects (UHI). It may be that the UHI effects were not strong enough in spring to affect onset but were 

strong enough to affect offset. We note that urbanization effects were stronger for summer-blooming 

species, where UHI might provide a buffer against late-season cold snaps (Yang and Bou-Zeid 2018). 

It is also likely that urban heat islands are not the only impact of urban environments on plant 

phenology (Li et al. 2019, Wohlfahrt et al. 2019). More work is needed to compare flower offset and 

duration dynamics in urban versus non-urban settings.

These results have strong implications for how continued warming and human development will 

impact flowering duration, and the ecological processes to which it is linked. Our empirically derived 

forecast models suggest that warming climate and urbanization trends are likely to lead to longer 

flowering durations. Longer durations, especially for summer-blooming plants, may mitigate the 

effects of onset shifts in relation to phenological mismatch with insect pollinators, presuming 

pollinators are responding to different cues. Based on the interactions between plant traits and 

temperature revealed here, durations may lengthen, especially for summer-flowering plants in areas 

where warming and/or urbanization increase the most. For spring-blooming species, flowering 

duration will likely be longer by 2030 but will be shorter by 2050, when their flowering offset will be 

advanced more than their onset. Such trait-dependent shifts in flowering timing and duration will 

affect fitness and cause phenological reassembly of plant communities (CaraDonna et al. 2014, 

Theobald et al. 2017), which in turn can strongly influence biotic interactions (Wolkovich and 

Cleland 2011), leading to trophic mismatches and altering food webs and ecosystem functioning 

(Tylianakis et al. 2008, Kerby and Post 2013, Visser and Gienapp 2019).

Estimating the absolute bounds of phenological events can be highly biased and inaccurate, especially 

when using presence-only data (Pearse et al. 2017), so we generated estimates of the 5th and 95th 

percentiles to provide more robust estimates of the onset and offset of flowering. These phenometrics 

were calculated using a Weibull-parameterized estimator that has been found to be fairly accurate A
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and, importantly, unbiased in estimating these phenometrics for univoltine phenological phases 

(Belitz et al. 2020). We expect some estimates to be lower or higher than the “true” onset or offset 

values, but we do not expect these errors to be consistently an overestimation or underestimation of 

the “true” value, allowing for robust parameter estimates in our models.

We note that while using spatial gradients for predicting temporal changes is common practice 

(e.g., species distribution models), space-for-time substitutions are subject to concern (Damgaard 

2019). Recognizing this issue, we have explicitly focused on relatively short-term predictions (in 10 

years and 30 years). Such a short-term prediction timeline limits concerns about temporal niche 

conservatism. One potential way to validate our predictions is to backcast temporal trends of 

flowering onset, offset, and durations in different regions using phenological information derived 

from herbarium specimens or other historical sources. The challenges, however, are not trivial. First, 

it is often more difficult and labor intensive to annotate flowers from herbarium specimens, although 

recent advances in machine learning and annotation methods can be helpful with this task (Brenskelle 

et al. 2020, Pearson et al. 2020). Second, the data density of specimen-derived phenological 

information likely will be too low for sufficient sampling at the spatial scale used here, since records 

must be dense enough both spatially and temporally to estimate phenology. Nevertheless, such an 

approach is critical for both validating models with backcasting and understanding spatiotemporal 

trends. We encourage the further complete digitization of such data.

This work showcases the power of new data sources generated by citizen science and methods to 

understand phenology at increasingly finer spatial grain and broad, range-wide extents. The single 

most significant bottleneck in this effort was annotating flowering state, but even here continued 

automation of such tasks is within reach (Pearson et al. 2020), including potential for more detailed 

phenology reporting e.g., number of flowers or fruits. If annotation automation can scale with growth 

of research-grade citizen science photographs, phenologists will have at their fingertips a global 

resource capable of addressing fundamental spatial ecological questions about phenology and its 

change.

Data Availability. We archived a version of the image data used in this study at GBIF 

(https://doi.org/10.15468/dl.7cxycm). All image scores, estimated flowering onset and offset dates, A
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contemporary and future climatic and human population density data are available on Github 

(https://github.com/daijiang/flower_duration) and are archived permanently at Zenodo 

(https://doi.org/10.5281/zenodo.3993848). Summary of number of images scored and functional traits 

of species are available in the Supporting Data.

Code Availability. Code used are available on Github (https://github.com/daijiang/flower_duration) 

and are archived permanently at Zenodo (https://doi.org/10.5281/zenodo.3993848).
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Figures

Figure 1: Schematic figures of different scenarios of plant flowering onset, offset, and duration (upper 

panel) and locations of flowering observations used (lower panel). Each filled 25 km by 25 km cell in the 

lower panel represents a location where phenometrics for at least one species could be estimated. The upper 

panel shows three hypothetical scenarios for spatial patterns of duration include: (a): longer flower durations in 

warm areas, which can happen if flower offset is less sensitive to temperature than flower onset (slope of offset 

shallower than onset); (b): fixed flower duration across areas with different annual average temperature, where 

the age of the structure after onset determines senescence timing, as might occur if there is stronger genetic 

control rather than environmental cues for offset; (c): shorter durations in warm areas, which can happen if the 

metabolic rate of flower offset is higher than that of flower onset with higher temperature (slope of offset 

steeper than onset).
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Figure 2: Model predictions of flowering onset (day of year). (a): Flowering onset was earlier in areas with 

higher annual average temperature, but the response of spring-blooming species was significantly more 

sensitive than that of summer-blooming species. Flowering onset was later in areas with higher temperature 

seasonality (b) and a higher number of chilling days (c). Shading areas indicate 95% confidence intervals 

hereafter.

Figure 3: Model predictions of flowering offset (day of year). (a): Flowering offset was earlier in warm areas 

for spring-blooming species, but was later for summer-blooming species. The flowering offset of species with 

different growth forms responded differently to changes in human population density (b, as a proxy of 

urbanization) and annual total precipitation (c). Woody plants showed higher sensitivity to both compared to 

herbaceous ones.

Figure 4: Model predictions of flowering duration (number of days). Flowering duration of summer and 

spring flowering species varied depending on growth forms (a) but was generally longer than those of spring-

blooming species (e). (b) shows that flowering duration of summer-blooming species, but not spring-blooming 

ones, was longer in areas with higher human population density. In (c), flowering duration in general was 

shorter in areas with higher temperature seasonality, especially for woody perennial species, though they also 

have the longest flowering durations compared with other growth forms (f). Flowering durations across all 

species were longer in areas with more precipitation (d) and less chilling days in winter (g). Error bars 

represent 95% confidence intervals.

Figure 5: Model predictions of flowering onset, offset, and duration under RCP 8.5 at 2030 and 2050. 

Labels on the y-axis indicate species names and whether they are spring- or summer-blooming species. Points 

filled with colors represent significant deviation from 0 (black vertical lines). Blue dots show mean shifts based 

on RCP 8.5 at 2030 and orange dots at 2050. Error bars represent 95% confidence intervals. All results are 

ordered by shifts in duration at 2050. Almost all species have longer predicted mean durations and this is 

strongest for summer flowering plants compared to spring bloomers.
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Table 1: Summary of linear mixed models and phylogenetic linear mixed models for plant 

flowering onset, offset, and duration. Summary of all fixed effects in models of onset, offset and 

duration fixed. Onset models primarily feature climatic drivers while offset and duration are also 

strongly driven by urbanization and interactions between traits and climate. Supplemental tables for 

each model provide details of random terms. Marginal and conditional R2 values for each model also 

provided. The “:” symbol in the term column represents interaction between variables. Abbreviations: 

bio1, annual average temperature; bio4, temperature seasonality; bio12, annual precipitation; number 

of winter chilling days, number of chilling days from November 15 to the end of February; group 

summer_bloomer, species that are summer bloomers; pop, log-transformed human population density 

at 25 by 25 km resolution; growth form Herb_perennial, growth form of herb (perennial); growth 

form Woody_perennial, growth form of woody species (perennial). LMM: linear mixed models; *: p 

< 0.05; ⋅ : p < 0.1.

term Onset_LMM Offset_LMM Duration_LMM

Intercept 86.97 ± 3.7 * 146.038 ± 11.9 * 60.36 ± 7.6 *

bio1 -16.204 ± 1.6 * -16.701 ± 1.5 * 9.264 ± 3 *

bio4 7.813 ± 1.7 * -6.146 ± 3.2 ⋅

number of winter chilling days 3.276 ± 1 * -6.054 ± 1.2 *

group summer_bloomer 93.914 ± 6.8 * 127.938 ± 12.4 * 40.005 ± 7.9 *

bio12 -0.852 ± 1.3 1.623 ± 1.1

pop 3.212 ± 1.3 * -0.276 ± 1.1

growth form Herb_perennial -10.334 ± 12.9 -14.004 ± 8.2 ⋅

growth form Woody_perennial 24.882 ± 19.7 22.6 ± 12.9 ⋅

bio1:group summer_bloomer 10.201 ± 2.7 * 25.431 ± 2.4 * 10.455 ± 2.7 *

pop:growth form Herb_perennial -1.116 ± 1.4

pop:growth form Woody_perennial 9.024 ± 2.3 *

bio12:growth form Herb_perennial 3.34 ± 1.5 *A
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bio12:growth form Woody_perennial 6.993 ± 2.8 *

pop:group summer_boolmer 4.405 ± 2 *

bio1:growth form Herb_perennial -8.971 ± 3.1 *

bio1:growth form Woody_perennial -13.106 ± 4.8 *

bio4:growth form Herb_perennial -6.954 ± 3.8 ⋅

bio4:growth form Woody_perennial -31.714 ± 5.8 *

Marginal R2 0.746 0.634 0.425

Conditional R2 0.919 0.928 0.691
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Onset Offset Duration

−20 −10 0 10 −20 −10 0 10 −20 −10 0 10

Trillium grandiflorum (Spring)
Mertensia virginica (Spring)
Claytonia virginica (Spring)

Cardamine concatenata (Spring)
Cypripedium acaule (Spring)

Phlox divaricata (Spring)
Anemonella thalictroides (Spring)

Monarda fistulosa (Spring)
Sanguinaria canadensis (Spring)

Podophyllum peltatum (Spring)
Dicentra cucullaria (Spring)

Viola sororia (Spring)
Aquilegia canadensis (Spring)

Dichelostemma capitatum (Spring)
Silene virginica (Spring)

Maianthemum racemosum (Spring)
Ipomopsis aggregata (Summer)

Fragaria vesca (Spring)
Sisyrinchium bellum (Spring)
Uvularia grandiflora (Spring)

Acmispon glaber (Spring)
Lobelia siphilitica (Summer)

Erythronium albidum (Spring)
Asclepias incarnata (Summer)

Hydrophyllum virginianum (Spring)
Epilobium angustifolium (Summer)

Ribes speciosum (Spring)
Lobelia cardinalis (Summer)

Prunus serotina (Spring)
Robinia pseudoacacia (Spring)

Eriogonum fasciculatum (Spring)
Symphyotrichum novae−angliae (Summer)

Clarkia unguiculata (Spring)
Sambucus cerulea (Spring)

Eupatorium coelestinum (Summer)
Campanula americana (Summer)

Chelone glabra (Summer)
Houstonia caerulea (Spring)

Salvia lyrata (Spring)
Penstemon cobaea (Spring)
Verbena hastata (Summer)

Cynoglossum grande (Spring)
Impatiens capensis (Summer)

Primula hendersonii (Spring)
Anemone berlandieri (Spring)

Castilleja exserta (Spring)
Trichostema lanceolatum (Summer)

Cephalanthus occidentalis (Summer)
Epilobium canum (Summer)

Nemophila menziesii (Spring)
Chamaecrista fasciculata (Summer)

Lupinus texensis (Spring)

Predicted value − Observed value

Scenario

RCP8.5 2030

RCP8.5 2050




