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Most animal species on Earth are insects, and recent reports suggest that their abundance is in drastic
decline. Although these reports come from a wide range of insect taxa and regions, the evidence to assess
the extent of the phenomenon is sparse. Insect populations are challenging to study, and most monitoring
methods are labor intensive and inefficient. Advances in computer vision and deep learning provide potential
new solutions to this global challenge. Cameras and other sensors can effectively, continuously, and
noninvasively perform entomological observations throughout diurnal and seasonal cycles. The physical
appearance of specimens can also be captured by automated imaging in the laboratory. When trained on
these data, deep learning models can provide estimates of insect abundance, biomass, and diversity.
Further, deep learning models can quantify variation in phenotypic traits, behavior, and interactions. Here,
we connect recent developments in deep learning and computer vision to the urgent demand for more cost-
efficient monitoring of insects and other invertebrates. We present examples of sensor-based monitoring of
insects. We show how deep learning tools can be applied to exceptionally large datasets to derive ecological
information and discuss the challenges that lie ahead for the implementation of such solutions in entomol-
ogy. We identify four focal areas, which will facilitate this transformation: 1) validation of image-based tax-
onomic identification; 2) generation of sufficient training data; 3) development of public, curated reference
databases; and 4) solutions to integrate deep learning and molecular tools.
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We are experiencing a mass extinction of species (1), but
data on changes in species diversity and abundance
have substantial taxonomic, spatial, and temporal biases
and gaps (2, 3). The lack of data holds especially true for
insects despite the fact that they represent the vast ma-
jority of animal species. A major reason for these short-
falls for insects and other invertebrates is that available
methods to study and monitor species and their popu-
lation trends are antiquated and inefficient (4). Neverthe-
less, some recent studies have demonstrated alarming
rates of insect diversity and abundance loss (5–7). To
further explore the extent and causes of these changes,
we need efficient, rigorous, and reliable methods to
study and monitor insects (4, 8).

Data to derive insect population trends are already
generated as part of ongoing biomonitoring programs.
However, legislative terrestrial biomonitoring (e.g., in
the context of the European Union [EU] Habitats Direc-
tive) focuses on a very small subset of individual insect
species such as rare butterflies and beetles because
the majority of insect taxa are too difficult or too costly
to monitor (9). In current legislative aquatic monitor-
ing, invertebrates are commonly used in assess-
ments of ecological status (e.g., the US Clean Water
Act, the EU Water Framework Directive, and the EU
Marine Strategy Framework Directive). Still, spatio-
temporal and taxonomic extent and resolution in on-
going biomonitoring programs are coarse and do not
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provide information on the status of the vast majority of insect
populations.

Molecular techniques such as DNAbarcoding andmetabarcoding
will likely become valuable tools for future insect monitoring based
on field-collected samples (10, 11), but at the moment, high-
throughput methods cannot provide reliable abundance estimates
(12, 13), leaving a critical need for other methodological approaches.
The state of the art in deep learning and computer vision methods
and image processing has matured to the point where it can aid or
even replace manual observation in situ (14) as well as in routine
laboratory sample processing tasks (15). Image-based observational
methods for monitoring of vertebrates using camera traps have un-
dergone rapid development in the past decade (14, 16–18). Similar
approaches using cameras and other sensors for investigating diver-
sity and abundance of insects are underway (19, 20). However, de-
spite huge attention in other domains, deep learning is only very
slowly beginning to be applied in invertebrate monitoring and
biodiversity research (21–25).

Deep learning models learn features of a dataset by iteratively
training on example data without the need for manual feature
extraction (26). In this way, deep learning is qualitatively different
from traditional statistical approaches to prediction (27). Deep
learning models specifically designed for dealing with images,
so-called convolutional neural networks (CNNs), can extract fea-
tures from images or objects within them and learn to differentiate
among them. There is great potential in automatic detection and
classification of insects in video or time-lapse images with trained
CNNs for monitoring purposes (20). As the methods become
more refined, they will bring exciting new opportunities for un-
derstanding insect ecology and for monitoring (19, 28–31).

Here, we argue that deep learning and computer vision can be
used to develop novel high-throughput systems for detection,
enumeration, classification, and discovery of species as well as
for deriving functional traits such as biomass for biomonitoring
purposes. These approaches can help solve long standing chal-
lenges in ecology and biodiversity research and also address press-
ing issues in insect population monitoring (32, 33). This article has
three goals. First, we present sensor-based solutions for observa-
tion of invertebrates in situ and for specimen-based research in the
laboratory. We focus on solutions, which either already use or could
benefit from deep learning models to analyze the large volume of
data involved. Second, we show how deep learning models can
be applied to obtained data streams to derive ecologically rele-
vant information. Last, we outline and discuss four main challenges
that lie ahead in the implementation of such solutions for inverte-
brate monitoring, ecology, and biodiversity research.

Sensor-Based Insect Monitoring
Sensors are widely used in ecology for gathering peripheral data
such as temperature, precipitation, and light intensity. However,
solutions for sensor-based monitoring of insects and other inver-
tebrates in their natural environment are only just emerging (34).
The innovation and development are primarily driven by agricul-
tural research to predict occurrence and abundance of beneficial
and pest insect species of economic importance (35–37), to pro-
vide more efficient screening of natural products for invasive in-
sect species (38), or to monitor disease vectors such as mosquitos
(39, 40). The most commonly used sensors are cameras, radars,
and microphones. Such sensor-based monitoring is likely to
generate datasets that are orders of magnitude larger than those
commonly studied in ecology (i.e., big data), which require effi-
cient solutions for extracting relevant biological information. Deep

learning could be a critical tool in this respect. Below, we give ex-
amples of image-based approaches to insect monitoring, which we
argue have the greatest potential for integration with deep learning.
We also describe approaches using other types of sensors, where
the integrationwith deep learning is less developed but still could be
relevant for detecting and classifying entomological information. We
further describe the ongoing efforts in the digitization of natural
history collections, which could generate valuable reference data for
training and validating deep learning models.

Image-Based Solutions for In Situ Monitoring. Some case
studies have already used cameras and deep learning methods
for detecting single species, such as the pest of the fruits of olive
trees Bactrocera oleae (41) or for more generic pest detection (42).
Here, the pest detection is based on images of insects that have
been trapped with either a McPhail-type trap or a trap with
pheromone lure and adhesive liner. The images are collected by a
microcomputer and transmitted to a remote server where they are
analyzed. Other solutions have embedded a digital camera and a
microprocessor that can count trapped individuals in real time
using object detection based on a deep learning model (37). In
both these cases, deep learning networks are trained to recognize
and count the number of individuals. However, there are very few
examples of invertebrate biodiversity-related field studies apply-
ing deep learning models (23). Early attempts used feature vec-
tors extracted from single perspective images and yieldedmodest
accuracy for 35 species of moths (43) or used mostly coarse tax-
onomic resolution (44). We have recently demonstrated that our
custom-built time-lapse cameras can record image data from
which a deep learning model can accurately estimate local spatial,
diurnal, and seasonal dynamics of honeybees and other flower-
visiting insects (45) (Fig. 1). Time-lapse cameras are less likely to
create observer bias than direct observation, and data collection
can extend across full diurnal and even seasonal timescales.
Cameras can be baited just as traditional light and pheromone
traps or placed over ephemeral natural resources such as flowers,
fruits, dung, fungi, or carrion. Bjerge et al. (46) propose to use an
automated light trap to monitor the abundance of moths and
other insects attracted to light. As the system is powered by a
solar panel, it can be installed in remote locations (Fig. 2). Ulti-
mately, true “Internet of Things”-enabled hardware will make it
possible to implement classification algorithms directly on the
camera units to provide fully autonomous systems in the field to
monitor insects and report detection and classification data back
to the user or to online portals in real time (34).

Radar, Acoustic, and Other Solutions for In Situ Monitoring.

The use of radar technology in entomology has allowed for the
study of insects at scales not possible with traditional methods,
specifically related to both migratory and nonmigratory insects
flying at high altitudes (47). Utilizing data from established weather
radar networks can provide information at the level of continents
(48), while specialized radar technology such as vertical-looking
radars (VLRs) can provide finer-grained data albeit at a local scale
(49). The VLRs can give estimates of biomass and body shape of the
detected object, and direction of flight, speed, and body orienta-
tion can be extracted from the return radar signal (50). However,
VLR data provide little information on community structure, and
conclusive species identification requires aerial trapping (51, 52).
Harmonic scanning radars can detect insects flying at low altitudes
at a range of several hundred meters, but insects need to be tag-
ged with a radar transponder and must be within line of sight
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(53, 54). Collectively, the use of radar technology in entomology
can provide valuable information in insect monitoring [for example,
on the magnitude of biomass flux stemming from insect migrations
(55)] but requires validation with other methods (e.g., ref. 56).

Bioacoustics is a well-established scientific discipline, and
acoustic signals have been widely used in the field of ecology. Al-
though most commonly used for birds and mammals, bioacoustic
techniques have merits in entomological monitoring. For example,
Jeliazkov et al. (57) used audio recordings to study population
trends of Orthoptera at large spatial and temporal scales, and Kiskin

et al. (58) demonstrated the use of a CNN to detect the presence of
mosquitoes by identifying the acoustic signal of their wingbeats.
Other studies have shown that even species classification for
groups such as grasshoppers (59) and bees (60) is possible using
machine learning on audio data. It has been argued that the use of
pseudoacoustic optical sensors rather than actual acoustic sensors is
a more promising technology because of the much improved
signal-to-noise ratio in these systems (61). Nevertheless, deep
learningmethods could be a valuable tool for acoustic entomological
monitoring.
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Fig. 1. We developed and tested a camera trap for monitoring flower-visiting insects, which records images at fixed intervals (45). (A) The setup
consists of two web cameras connected to a control unit containing a Raspberry Pi computer and a hard drive. In our test, 10 camera traps were
mounted on custom-built steel rod mounts 30 cm above a green roof mix of plants in the genus Sedum. Images were recorded every 30 s during the
entire flowering season. After training a CNN (Yolo3), we detected>100,000 instances of pollinators over the course of an entire growing season. (B)
An example image from one of the cameras showing a scene consisting of different flowering plant species. The locations of the insect detections
varied greatly among three common flower-visiting species: (C) the European honeybee (Apis mellifera), (D) the red-tailed bumblebee (Bombus
lapidarius), and (E) the marmalade hoverfly (Episyrphus balteatus). Across the 10 image series, the deep learning model detected detailed variation in
(F) seasonal and (G) diurnal variation in the occurrence frequency among the same three species. Adapted with permission from ref. 45.
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Other types of sensor technology are used to automate the
recording of insect activity or even body mass, typically without
actual consideration of the subsequent processing of the data
with deep learning methods (62, 63). In one of these recent
studies, researchers used a sensor ring of photodiodes and in-
frared light-emitting diodes to detect large- and small-sized ar-
thropods, including pollinators and pests, and achieved a 95%
detection accuracy for live microarthropods of three different
species in the size range from 0.5 to 1.1 mm (62). The Edapholog
(63) is a low-power monitoring system for detection of soil
microarthropods. Probe and sensing are based on detection of
change in infrared light intensity similar to ref. 62, and it counts the
organisms falling into the trap and estimates their body size. The
probe is connected via radio signals to a logging device that
transmits the data to a server for real-time monitoring. Similarly,
others have augmented traditional low-cost trapping methods by
implementing optoelectronic sensors and wireless communica-
tion to allow for real-time monitoring and reporting (35). Since

such sensors do not produce images that are intuitive to validate,
it could be challenging to generate sufficient, validated training
data for implementing deep learning models, although such
models could still prove useful.

Digitizing Specimens and Natural History Collections. There are
strong efforts to digitize natural history collections for multiple rea-
sons including the potential for applying deep learning methods
(64). The need for and benefits of digitizing natural science collec-
tions have motivated the foundation of the Distributed System of
Scientific Collections Research Infrastructure (DISSCo RI; https://
www.dissco.eu/). DISSCo RI strives for the digital unification of all
European natural science assets under common curation and access
policies and practices. Most existing databases include single-view
digitizations of pinned specimens (65), while datasets of insect
specimens recorded using multiple sensors, three-dimensional
models, and databases on living insect specimens are only just
emerging (66, 67). The latter could be particularly relevant for deep
learning models. There is also a valuable archive of entomological
data in herbarium specimens in the form of signs of herbivory (68).
The standard digitization of herbarium collections has proven suit-
able for extracting herbivory data using machine learning techniques
(69). Techniques to automate digitization will accelerate the devel-
opment of such valuable databases (64). The BIODISCOVER ma-
chine (70) is a solution for automated digitization of liquid-preserved
specimens such as most field-collected insects. The process consists
of four automatized steps: 1) bin picking of individual insects directly
from bulk samples; 2) recording the specimen from multiple angles
using high-speed imaging; 3) saving the captured data in an opti-
mizedway for deep learning algorithm training and further study; and
4) sorting specimens according to size, taxonomic identity, or rarity
for potential further molecular processing (Fig. 3). Implementing such
tools for the processing of bulk insect samples from large-scale in-
ventories and monitoring studies could rapidly and nondestructively
generate population and community data. Digitization efforts should
also carefully consider how images of individual specimens can be
leveraged to develop deep learning models for in situ monitoring.

Potential Deep Learning Applications in Entomology
The big data collected by sensor-based insect monitoring as de-
scribed above require efficient solutions for transforming the data
into biologically relevant information. Preliminary results suggest
that deep learning offers a valuable tool in this respect and could
further inspire the collection of new types of data (20, 45). Deep
learning software (e.g., for ecological applications) is mostly con-
structed using open source Python libraries and frameworks such as
TensorFlow, Keras, PyTorch, and Scikit-learn (24), and prototype
implementations are typically made publicly available (e.g., on
https://github.com/). This, in turn, makes the latest advances in
other fields related to object detection and fine-grained classifica-
tion available also for entomological research. As such, the deep
learning toolbox is already available to entomologists, but some
tools may need to be adapted for specific entomological applica-
tions. In the following, we provide a brief description of the trans-
formative potential of deep learning related to entomological data
stored in images structured around four main applications.

Detecting and Tracking Individuals In Situ. Image-based moni-
toring of insect abundance and diversity could rapidly become
globally widespread as countries make efforts to better understand
the severity of the global insect decline and identify mitigation
measures. Identification of individual insects has recently been

Fig. 2. (A) To automatically monitor nocturnal moth species, we
designed a light trap with an onboard computer vision system (46).
The light trap is equipped with three different light sources: a
fluorescent tube to attract moths, a light table covered by a white
sheet to provide a diffuse background illumination for the resting
insects, and a light ring to illuminate the specimens. The system is
able to attract moths and automatically capture images based on
motion detection. The trap is designed using standard components
such as a high-resolution universal serial bus web camera and a
Raspberry Pi computer. (B) We have proposed a computer vision
algorithm that can track and count individual moths. A customized
CNN was trained to detect and classify eight different moth species.
Ten (1–10) individuals were automatically detected in this example
photo recorded by the trap. The algorithm can run on the onboard
computer to allow the system to automatically process and submit
species data via a modem to a server. The system works off grid due
to a battery and solar panel. Reprinted with permission from ref. 46.
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facilitated by online portals such as https://www.inaturalist.org/ and
https://observation.org/ and their associated smartphone apps.
These systems provide instant candidate species when users up-
load pictures of observed insect species by using deep learning
models. While such portals provide powerful tools for rapid gen-
eration of biodiversity data, their main purpose is opportunistic
recording of species occurrence and not structured ecological
monitoring. However, such systems could be adapted for moni-
toring purposes. For example, a network of time-lapse cameras
could generate high-temporal and -spatial resolution image data
formonitoring of specific insect species. In some cases, detection of
individuals from such data could be achieved by simple modifica-
tions to existingmodels, while in other cases, custom-built solutions
may be necessary. Combining image data with acoustic or behav-
ioral data could be a solution for taxa that are harder to detect and
identify. In addition to detecting and classifying individuals, object
detection models can also pinpoint their exact location within an
image. Suchmodels can be applied to time-lapse and video data in

order to track the position of individual insects in situ through time.
This would add an additional valuable layer of data, which can be
derived from image-based observations. For instance, the move-
ment speed of individual insects can be related to the observed
microclimatic variation, and more realistic thermal performance
curves can be established and contrasted to traditional laboratory-
derived thermal performance.

However, tracking insects in their natural environment is cur-
rently a highly challenging task due to issues that include the
cluttered scenes and varying lighting conditions. In computer vi-
sion, such tasks are termed “detection-based online multiple
object tracking” and work under a set of assumptions (71). These
assumptions include a precise initial detection (initialization) of the
objects to be tracked in a scene; a good ability to visually dis-
criminate between the multiple tracked objects; and smooth
motion, velocity, and acceleration patterns of the tracked ob-
jects (72). The small visual differences among individual insects
and frequent hiding behavior violate the above assumptions.

Fig. 3. The BIODISCOVER machine can automate the process of invertebrate sample sorting, species identification, and biomass estimation (70). (A)
The imaging system consists of an ethanol-filled spectroscopic cuvette, a powerful and adjustable light source, and two cameras capable of recording
images at 50 frames per second (B) The setup is mounted in a light-proof aluminum box and fitted with a pump for refilling the spectroscopic cuvette.
(C) Each specimen is imaged from two angles by the cameras as it is dropped into the ethanol-filled cuvette, and geometric features related to size and
biomass are computed automatically. (D) The specimen (1) is imaged by two cameras (2) as it sinks through the ethanol. The system has a built-in
flushingmechanism (3) for controlling which specimens should be kept together for subsequent storage or analysis (4). The results for an initial dataset
of images of 598 specimens across 12 species of known identity were very promising, with a classification accuracy of 98.0%. Adapted from ref. 70,
which is licensed under CC BY 4.0.

Høye et al. PNAS | 5 of 10
Deep learning and computer vision will transform entomology https://doi.org/10.1073/pnas.2002545117

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ay

 1
6,

 2
02

1 

https://www.inaturalist.org/
https://observation.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.2002545117


Moreover, current state-of-the-art deep learning models typically
usemillions of learned parameters and can only run in near real time
with low-resolution video, which constrains the visual discrimination
of the targeted objects in the scene. Possible solutions to these
challenges include the use of nonlinear motion models (73) and
the development of compact (74) or compressed (75) deep
learning models.

Solving the task of tracking individual insects could open the
doors for a new individual-based ecology with profound impacts
in such research fields as population, behavioral, and thermal
ecology as well as conservation biology. Moreover, considering
the recent development in low-cost powerful graphical process-
ing units and dedicated artificial intelligence processors suitable
for autonomous and embedded systems (e.g., NVIDIA Jetson
Nano, Google Coral Edge TPU, and the Intel AI USB stick), it may
soon become feasible to detect, track, and decode behavior of
insects in real time and report information back to the user.

Detecting Species Interactions. Species interactions are critical
for the functioning of ecosystems, yet as they are ephemeral and
fast, the consequences of a disruption for ecological function
are hard to quantify (76). High-temporal resolution image-based
monitoring of consumers and resources can allow for a unique
quantification of species interactions (77). For instance, insects vis-
iting flowers, defoliation by herbivores, and predation events can
be continuously recorded across entire growing seasons with fixed
position cameras. To detect such interactions, image recording
should be collected at the scales where individuals interact (i.e., by
observing interacting individuals at intervals of seconds to minutes),
yet they should ideally extend over seasonal and/or multiannual
periods (78). Our preliminary results have demonstrated an exciting
potential to record plant–insect interactions using time-lapse
cameras and deep learning models (28) (Fig. 1).

Taxonomic Identification. Taxonomic identification can be approached
as a deep learning classification problem. Deep learning-based classi-
fication accuracies for image-based insect identification of speci-
mens are approaching the accuracy of human experts (79–81).
Applications of gradient-weighted class activation mapping can
even visualize morphologically important features for CNN classi-
fication (81). Classification accuracy is generally much lower when
the insects are recorded live in their natural environments (82, 83),
but when class confidence is low at the species level, it may still be
possible to confidently classify insects to a coarser taxonomic res-
olution (84). In recent years, impressive results have been obtained
by CNNs (85). They can classify huge image datasets, such as the
1,000-class ImageNet dataset, at high accuracy and speed (86).
Even with images of >10,000 species of plants, classification ac-
curacy of the best CNNs was close to that of botanical experts.
Currently, such performance of CNNs can only be achieved with
very large amounts of training data (87), but further improvements
are likely, given recent promising results in distributed training of
deep neural networks (88) and federated learning (89, 90).

It is common for ecological communities to contain a large
fraction of relatively rare species. This often results in highly im-
balanced datasets, and the number of specimens representing
the rarest species could be insufficient for training neural networks
(83, 84). As such, advancing the development of algorithms and
approaches for improved identification of rare classes is a key
challenge for deep learning-based taxonomic identification (25).
Solutions to this challenge could be inspired by class resampling
and cost-sensitive training (91) or by multiset feature learning (92).

Class resampling aims at balancing the classes by undersampling
the larger classes and/or oversampling the smaller classes, while
cost-sensitive training assigns a higher loss for errors on the smaller
classes. In multiset feature learning, the larger classes are split into
smaller subsets, which are combined with the smaller classes to
form separate training sets. These methods are all used to learn
features that can more robustly distinguish the smaller classes.
Species identification performance can vary widely, ranging from
species that are correctly identified inmost cases to species that are
generally difficult to identify (93). Typically, the amount of training
data is a key element for successful identification, although recent
analyses of images of ∼65,000 specimens in the carabid beetle
collection at the Natural History Museum London suggest that
imbalances in identification performance are not necessarily related
to howwell represented a species is in the training data (84). Further
work is needed on large datasets to fully understand these
challenges.

A related challenge is formed by those species that are com-
pletely absent from the reference database on which the deep
learning models are trained. Detecting such species requires
techniques developed for multiple-class novelty/anomaly detec-
tion or open set/world recognition (94, 95). A recent survey in-
troduced various open set recognition methods with the two main
approaches being discriminative and generative (96). Discrimi-
native models are based on traditional machine learning tech-
niques or deep neural networks with some additional mechanism
to detect outliers, while the main idea of generative models is to
generate either positive or negative samples for training. How-
ever, the current methods are typically applied to relatively small
datasets and do not scale well with the number of classes (96).
Insect datasets typically have a high number of classes and a very
fine-grained distribution, where the phenotypic differences be-
tween species may be minute while intraspecific variation may be
large. Such datasets are especially challenging for open set rec-
ognition methods. While it will be extremely difficult to overcome
this challenge for all species using only phenotype-based identi-
fication, combining image-based deep learning and DNA
barcoding techniques may help to solve the problem.

Estimating Biomass from Bulk Samples. Deep learning models
can potentially predict biomass of bulk insect samples in a labora-
tory setting. Legislative aquatic monitoring efforts in the United
States and Europe require information about the abundance or
biomass of individual taxa from bulk invertebrate samples. Using
the BIODISCOVER machine, Ärje et al. (70) were able to estimate
biomass variation of individual specimens of Diptera species with-
out destroying specimens. This was achieved from geometric fea-
tures of the specimen extracted from images recorded by the
BIODISCOVER machine and statistically relating such values to
subsequently obtained dry mass from the same specimens. To
validate such approaches, it is necessary to have accurate infor-
mation about the dry mass of a large selection of taxa. In the future,
deep learning models may provide even more accurate estimates
of biomass. Obtaining specimen-specific biomass information
nondestructively from bulk samples is a high priority in routine in-
sect monitoring since it will enable more extensive insights into
insect population and community dynamics and provide better
information for environmental management.
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Future Directions
To unlock the full potential of deep learning methods for insect
ecology and monitoring, four main challenges need to be addressed
with highest priority. We describe each of these challenges below.

Validating Image-Based Taxonomic Identification. Validation of
the detection and identification of species recorded with cameras
in the field poses a critical challenge for implementing deep
learning tools in entomology. Often, it will not be possible to
conclusively identify insects from images, and validation of image-
based species classification should be done using independent
data. In some cases, it is possible to substantiate claims about
species identity from the known occurrence and relative abun-
dance of a species in a particular region or habitat. Independent
data can be collected by analyzing DNA traces of insects left (e.g.,
on flowers) (97) or by directly observing and catching insects vis-
ible to the camera. The subsequent identification of specimens can
serve as validation of image-based results and can further help in
production of training data for optimizing deep learning models.

Generating Training Data.One of the main challenges with deep
learning is the need for large amounts of training data, which is
slow, difficult, and expensive to collect and label. Deep learning
models typically require hundreds of training instances of a given
species to learn to detect its occurrence against the background
(83). In a laboratory setting, the collection of data can be eased by
automated imaging devices, such as the BIODISCOVER described
above, which allows for imaging of large numbers of insects under
fixed settings. The imaging of species in situ should be done in a
wide range of conditions (e.g., different backgrounds, times of day,
and seasons) to avoid the model becoming biased toward specific
backgrounds. Approaches to alleviate the challenge of moving
from one environment to another include multitask learning (98),
style transfer (99), image generation (100), or domain adaptation
(101). Multitask learning aims to concurrently learn multiple differ-
ent tasks (e.g., segmentation, classification, detection) by sharing
information leading to better data representations and ultimately,
better results. Style transfer methods try to impose properties
appearing in one set of data to new data. Image generation can be
used to create synthetic training images with, for example, varying
backgrounds. Domain adaptation aims at tuning the parameters of
a deep learning model trained on data following one distribution
(source domain) to adapt so that they can provide high perfor-
mance on new data following another distribution (target domain).

The motion detection sensors in wildlife cameras are typically
not triggered by insects, and species typically only occur in a small
fraction of time-lapse images. A key challenge is therefore to detect
insects and filter out blank images from images with species of in-
terest (102, 103). Citizen science web portals, such as https://www.
zooniverse.org/, can generate data for training and validation of
deep learning models, if the organisms of interests are easy to
detect and identify (103). When it is difficult to obtain sufficient
samples of rare insects, Zhong et al. (104) proposed to use deep
learning only to detect all species of flying insects as a single class.
Subsequently, the fine-grained species classification can be based
on manual feature extraction and support vector machines, a ma-
chine learning technique that requires less training data than CNNs.

The issue of scarce training data can also be alleviated with
new data synthesis. Data synthesis could be used specifically to
augment the training set by creating artificial images of seg-
mented individual insects that are placed randomly in scenes with
different backgrounds (105). A promising alternative is to use

deep learning models for generating artificial images belonging
to the class of interest. The most widely used approach to date is
based on generative adversarial networks (106) and has shown
promising performance in computer vision problems in general,
as well as in ecological problems (107).

Building Reference Databases. Publicly available reference da-
tabases are critical for adapting deep learning tools to entomo-
logical research. Initiatives like DISSCO RI and IDigBio (https://
www.idigbio.org/) are important for enabling the use of museum
collections. However, to enable deep learning-based identifica-
tion, individual open datasets from entomological research and
monitoring are also needed (e.g., refs. 82, 93, and 108). The
collation of such datasets will require dedicated projects as well as
large, coordinated efforts to promote open access such as the
European Open Science Cloud and the Research Data Alliance.
Noncollection datasets should also use common approaches and
hardware and abide best practices in metadata and data man-
agement (109–111). For instance, all of the possible metadata
related to the imaging and the specimens should be saved for
future analysis, and the corresponding labeling of images of
specimens paired to the metadata is critical. Using multiple ex-
perts and molecular information about species identity to verify
the labeling or performing subsequent validity checks through
DNA barcoding will improve the data quality and the performance
of the deep learning models. This can be done, for instance, by
manually verifying the quality and labeling of images that are re-
peatedly misclassified by the deep learning methods. Standardized
imaging devices such as the BIODISCOVER machine could also
play a key role in building reference databases from monitoring
programs (70). Training classifiers with species that are currently not
encountered in a certain region but can possibly spread there later
will naturally help to detect such changes when they occur. Inte-
gration of such reference databases with field monitoring methods
forms an important future challenge. As a starting point, we provide
a list of open-access entomological image databases (SI Appendix).

Integration of Deep Learning and DNA-Based Tools. For pro-
cessing insect community samples in the laboratory, molecular
methods have gained increasing attention over the past decade,
but there are still critical challenges that remain unresolved:
specimens are typically destroyed, abundance cannot be accu-
rately estimated, and key specimens cannot be identified in bulk
samples. Nevertheless, DNA barcoding is now an established,
powerful method to reliably assess biodiversity also in entomol-
ogy (11). For insects, this works by sequencing a short fragment of
the mitochondrial cytochrome-c-oxidase I subunit gene and
comparing the DNA sequence with a reference database (112).
Even undescribed and morphologically cryptic species can be
distinguished with this approach (113), which is unlikely to be
possible with deep learning. This is of great importance as mor-
phologically similar species can have distinct ecological prefer-
ences (114), and thus, distinguishing them unambiguously is
important for monitoring, ecosystem assessment, and conserva-
tion biology. However, mass sequencing-based molecular meth-
ods cannot provide precise abundance or biomass estimates and
assign sequences to individual specimens (12). Therefore, an un-
paralleled strength lies in combining both image recognition and
DNA metabarcoding approaches. When building reference col-
lections for training insect classification models, species identity
can be molecularly verified, and potential cryptic species can
be separated by the DNA barcode. After image-based species
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identification of a whole bulk sample, all specimens can be pro-
cessed via DNA metabarcoding to assess taxonomic resolution at
the highest level. A further obvious advantage of linking computer
vision and deep learning to DNA is that even in the absence of
formal species descriptions, DNA tools can generate distinctly
referenced taxonomic assignments via so-called “Barcode-Index-
Numbers” (BINs) (115). These BINs provide referenced biodiversity
units using the taxonomic backbone of Barcode of Life Data Sys-
tems (https://boldsystems.org) and represent a much greater di-
versity of even yet undescribed species (116). These units can also
be directly used as part of ecosystem status assessment despite not
yet having Linnean names. BINs can be used for model training.
Recent studies convincingly show that with this more holistic ap-
proach, which includes cryptic and undescribed species, the pre-
dictions of environmental status as required by several legislative
monitoring programs actually improve substantially (e.g., ref. 117).
For cases of cryptic species with great relevance (e.g., for conser-
vation biology), it is also possible to individually process specimens
of a cryptic species complex after automated image-based as-
signment to further validate their identity and abundance. Com-
bining deep learning with DNA-based approaches could deliver
detailed trait information, biomass, and abundance with the best
possible taxonomic resolution.

Conclusion
Deep learning is currently influencing a wide range of scientific
disciplines (85) but has only just begun to benefit entomology.
While there is a vast potential for deep learning of images and other
data types to transform insect ecology and monitoring, applying
deep learning to entomological research questions brings new
technical challenges. The complexity of deep learning models and
the challenges of entomological data require substantial invest-
ment in interdisciplinary efforts to unleash the potential of deep
learning in entomology. However, these challenges also represent
ample potential for cross-fertilization among biological and com-
puter sciences. The benefit to entomology is not only more data
but also novel kinds of data. As the deep learning tools become

widely available and intuitive to use, they can transform field en-
tomology by providing information that is currently intractable to
record by human observations (18, 33, 118). Consequently, there is
a bright future for entomology. Deep learning and computer vision
is opening up new research niches and creates access to unfore-
seen scales and resolution of data that will benefit future biodi-
versity assessments.

The shift toward automated methods may raise concerns about
the future for taxonomists, much like the debate concerned with
developments in molecular species identification (119, 120). We
emphasize that the expertise of taxonomists is at the heart of and
critical to these developments. Initially, automated techniques will
be used in the most routine-like tasks, which in turn, will allow the
taxonomic experts to dedicate their focus on the specimens re-
quiringmore in-depth studies as well as the plethora of new species
that need to be described and studied. To enable this, we need to
consider approaches that can pinpoint samples for human expert
inspection in a meaningful way [e.g., based on neural network
classification confidences (79) or additional rare species detectors
(121)]. As deep learning becomes more closely integrated in en-
tomological research, the vision of real-time detection, tracking,
and decoding of behavior of insects could be realized for a trans-
formation of insect ecology and monitoring. In turn, efficient
tracking of insect biodiversity trends will aid the identification of
effective measures to counteract or revert biodiversity loss.

Data Availability. There are no data underlying this work.
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